HANDBOOK OF

The Secure Agile Software
Development Life Cycle

This work was supported by TEKES as part of the
Cloud Software Program of DIGILE (Finnish Strategic
Centre for Science, Technology and Innovationin the

field of ICT and digital business).

Handbook of the Secure Agile Software Development Life Cycle

Publisher: University of Oulu, 2014

Editors: Pekka Pietikdinen, Juha R6ning

Authors: Jouko Ahola, Christian Friihwirth, Marko Helenius, Lea Kutvonen, Juho Myllylahti,
Timo Nyberg, Ari Pietikdinen, Pekka Pietikdinen, Juha Roning, Sini Ruohomaa, Camillo Sdrs,
Tuuli Siiskonen, Antti Vaha-Sipild, Ville Ylimannela

ISBN number: 978-952-62-0341-6

Layout: Paikallinen Mainostoimisto

Juvenes Print Oulu, 2014

Contents

Foreword

Chapter contents

Generic Security User Stories
Executive summary
Concepts
Why Security User Stories?
Using Generic Security User Stories
Larger security themes
Story selection matrix
The Generic Security User Stories
Experiences of Using Security User Stories
References

Security in Agile Product Management
Executive summary
Introduction
Concepts
Driving security in agile product management
References

Security activitiesin scrum control points
Executive summary
Scrum control points
Security requirements and controls
Security activities within control points
References

Risk Management
Executive summary
Introduction
Existing frameworks for risk and security management in agile software development
Challenges and limitations of agile security
A suggested model for agile security
References

First Steps to Consider Privacy
Executive summary
Introduction
Concepts
How to avoid unacceptablerisks and how to achieve needed privacy maturity level?
Experiences and discussion
References

Security Metrics
Executive summary
Introduction
Metrics Concepts overview
Aniterative process to develop security metrics
A workshop method to align metrics with measurement objectives
References

00 00 00

O

10

11
14
14
15

16
16
16
17
18
22

23
23
23
24
25
29

30
30
30
34
37
38
43

45
45
45
45
47
47
48

49
49
49
50
51

52
57

Fuzzing

Executive summary

Concepts

Fuzzing, improving security and agile software development
Experiences and discussion

References

Dynamic Trust Management

Executive summary

Introduction

Concepts

Service ecosystem engineering for trust management
Experiences and discussion

Policy configuration

Input Data

References

Appendix: Generic Security User Stories

58
58
58
61
62
63

64
64
64
65
67
69
69
71
72

73

Foreword

“The Cloud Software program (2010-2013) aims to significantly improve the competitive posi-
tion of Finnish software intensive industry in global markets. According to the 2009 survey most
significant factors of competitiveness are:operational efficiency, user experience, web software,
open systems, security engineering and sustainable development. Cloud software ties these fac-
tors together as software increasingly moves to the web. Cloud Software program especially aims
to pioneer in building new cloud business models, lean software enterprise model and open cloud
softwareinfrastructure.”

- Janne Jarvinen, Focus Area Director

Software quality problems, wide impact vulnerabilities, phishing, botnets and criminal enterprise have
proven that software and system security is not just an add-on despite past focus of the security in-
dustry.

Cloud computing introduces a whole ecosystem of clients, services and infrastructure, where trust
boundaries are moved even further into components, where physical location or even ownership is un-
known. Add-on security therefore becomes more futile than it ever was. There is no place where these
add-on components would reside.

Security, trust, dependability and privacy are issues that have to be considered over the whole life-
cycle of the system and software development from gathering requirements to deploying the system
in practice. Doing this does not only make us safer and secure but improves overall system quality and
development efficiency.

Inthe past few years, severalinitiatives have surfaced to address security in the software development
lifecycle. These include prescriptive models from companies, such as Microsoft Security Development
Lifecycle (SDL), descriptive activity surveys such as the Building Security In Maturity Model (BSIMM),
and even standards, such as the ISO/IEC 27034, Building a mature software security initiative may be
expensive. Smaller software vendors, specifically smalland medium enterprises, may not afford to have
dedicated resources for their own security initiatives. However, they still need to compete against the
larger players.

Many of recent security initiatives have been relatively open and can be leveraged to help the Finnish
Industry and to initiate new business. Finland has pioneered research in Security Metrics, Vulnerability,
Managing Complexity, Security as a Quality Aspect and Software Robustness areas. This research can
therefore be applied directly to be apart of new, improved SDLs.

Thereis adesiretoimprove software and system development life-cycle efficiency so those efforts can
drive security and security can support them. Secure Development Lifecyclesin Cloud Services require
a change of mindset from individual devices or pieces of software, to complex systems, such as Cloud
Services, consisting of numerous software components, as well as infrastructure, all of which are all
developed with varying development life-cycles, and are procured from a variety of sources (e.g., sub-
contractors and open source for software and, e.g., Amazon EC2 and private clouds for infrastructure).
These are thenintegrated and verified (internally, or using external auditors), and finally deployed.

Ecosystems should be recognized and supported since the secure software development lifecycleis
notisolated to the conventional vendors but affects post deployment end-users, 3rd party developers
and e.g. carrier partners.

Chapter contents

This book brings together experiences and results from security research donein liaison by the authors
during the Cloud Software Program, each bringing in their own viewpoint. The chapters are standalone
articles, which canbereadinany order. With this book we hope to communicate forward the explicit and
tacit knowledge we have accumulated with the hopes that readers of the book (such as you) might gain
something from our experiences and in result make the kingdom of clouds a bit safer and trustworthier
place for the common good of us all.

Chapter 2: Generic Security User Stories

Tuuli Siiskonen, Camillo Sdrs and Antti Vdhd-Sipild and Ari Pietikdinen introduce Generic Security User
stories, whichare atoolforintroducing security requirementsinto software projects, where the project
organisation may not have access to the services for a full-time security professional.

Chapter 3: Security in Agile Product Management

Antti Vahd-Sipild discusses how software security engineering practices can be mapped to various ag-
ile product management concepts. The basic tenetis that work needs to be made visible,and as the main
vehicle for that is the product backlog, the article concentrates on how software security work can be
put on the backlog.

Chapter 4: Security activities in scrum control points

Ville Ylimannela and Marko Helenius describe how to map important control points in Scrum and decide
what security activities should be performedin the control points. The security activities discussed are:
security templates, threat assessment, feature flagging and residual risk approval. The criteria used to
judge the activities are: documentation, customer interaction, speed of execution, simplicity and secu-
rity.

Chapter 5: Risk management
Ville Ylimannela and Marko Helenius outline a method for identifying and managing security risks in an
agile software project utilizing risk boards.

Chapter 6: First Steps to Consider Privacy
AriPietikdinen and Jouko Aholadiscuss privacy issues and personal database protection, analysing risks
related to them,as well as the main initial steps any enterprise shall take to manage privacy issuea.

Chapter 7: Security Metrics

Reijo Savola, Christian Frihwirth, Ari Pietikdinen and Timo Nyberg provide a a simple security, privacy
and trust metrics development approach and a method for aligning security metrics with security ob-
jectives

Chapter 8: Fuzzing

Juho Myllylahti and Pekka Pietikdinen write about fuzzing. Fuzzing is an effective and practical form of
fault-based testing which is especially popular in security and robustness testing. Fuzzing tools widely
used by security researches and other parties who try to uncover vulnerabilities in widely used real
world software. The chapter presents the generalidea,

terminology and tries to give insight on how to combine fuzzing and agile development practices.

Chapter 9: Dynamic Trust Management

Sini Ruohomaa and Lea Kutvonen take a look at dynamic trust management, which provides for en-
hanced security during operational time when a composition of software services run together forming
asystem that spans over organizational boundaries, in a shared cloud or between clouds.

Appendix 1: Generic Security User Story templates
The full set of Generic Security User Stories, introduced in Chapter 2.

Generic S

User Storie

Concepts section:

Tuuli Siiskonen, F-Secure
Camillo Sars, F-Secure
Antti Vaha-Sipild, F-Secure

Experiences section:
AriPietikdinen, Ericsson

Executive summary

Smaller organisations and software development groups may not have access to dedicated services of
a security professional. If the organisation or a group is using a product backlog to drive their software
development work, a set of ready-made backlog items (requirements and task descriptions) may be
helpful. Adding these ready-made backlog items on the product backlog is a bit like building a checklist
into therequirements.

We present a set of backlog items in the form of “user stories". A "user story" is a requirement with a
specific format, offering both the value proposition and the next steps. The aimis that the backlog items
should fit in with minimal editing.

Concepts

User Stories

A "user story" is a format for capturing what a user needs to do, and also describes the value that the
user would get from a specific functionality, often used in agile product management. Here, we use the
term "user story' to denote the format in which the needs are written down, not the size of the work
or feature that implementing it involves. Organisations that have comprehensive agile product man-
agement pipelines often use different names for different levels, or sizes, of stories: large ones may be
known as epics and smaller ones features, user stories, and tasks. A good description of this sort of
story-based structure can be found both in the paper by Leffingwell and Aalto, as well as the book by
Leffingwell, both of which can be foundin the references of this article.

A user story, as a format, is suitable for each of these levels. Many of these user stories would be what
many companies would call features.

The storiesin this list are subdivided into several parts:

Part of a User Story

An example

The stakeholder and the value proposition have been documented for
each story so that product owners can reach out to these individu-
als to get their views on the relative importance of that user story.
In many of the stories, the stakeholder title reflects a company who
createshosted “cloud” services. You may need to adjust the actors so
that they correspond to your organisation's roles. Typically the stake-
holder and value proposition are described as "as <someone>, | want
<something> so that <value proposition>".

“As a user | want dancing
hamsters on the screen so
that | can become a better
person.”

A longer explanation of the story opens up the rationale and back-
ground of the story, and also explains some of the terminology. This
explanation should be accessible to any software generalist.

"Dancing furry animals are
a well-known method for
stress relief, and stress is
one of the leading blockers
for persons on their jour-
ney to enlightenment. We
provide an allergen-free
access to furry dancing
animals.”

Each user story has a set of acceptance criteria that need to be met
for the user story to be deemed to be complete, or “done". These ac-
ceptancecriteriaare always measurable, and often binary: you can say
“yes" or “no’" for each of them. Typically the criteria are either tests
that would be written, or establishing that a document exists. In any
case, after the acceptance criteria have been satisfied, the user story
can be closed. Any tests that have been written continue to be run as
a set of module or system tests, and should they later fail, it shows up
as abug. If you have quality criteria that apply to each and every task,
those should probably be driven through more common "definition of
done".

"Test that the product dis-
plays at least three danc-
ing hamsters concurrently
with an fps of greater than
25"

There is a set of refinement (a.k.a. “grooming’) questions for every
user story. These are questions which the product owner or the devel-
opers are encouraged to ask from themselves in order to discover the
actual work that needs to be done for the user story. These questions
canbe discussed when splitting the user stories into smaller tasks, for
example, in sprint planning, or a separate "backlog refinement” ses-
sion. If you feel unsure as to where to start, the refinement questions
provide way to approach the user story in a productive and practical
way. Having refinement questions written down are not always nec-
essary for all audiences, but are helpful when the stories are taken
from an external source such as this list.

“"How do we ethically
source the hamster dance
video? (Contact PETA and
the American Humane As-
sociation for guidance.)”

Why Security User Stories?

User stories are the fuel of an agile team. The stories are fed to the team through an ordered (priori-
tised) list called the product backlog. The team implements the stories, and once done, the software is
expected to provide the value specified by the user story. Security requirements are notoriously hard
for customers to require explicitly; security, as an aspect of quality, is often assumed and an implicit
requirement. The fact that it indeed is a requirement is often noticed when something goes wrong, and
it becomes evident that security should have beenrequired. Thisis why we have created a set of ready-

made user stories that can be used to cover the security requirements, even if the customer lacks the
expertise to specifically require them.

User stories also drive work and resource allocation. We believe that all work should be driven by a busi-
ness requirement, and in agile, this means that a user story should exist. There cannot be some sort of
invisible time allocation that would magically produce test cases and documentation outside the user
stories. Creating test cases and writing documentation is work. If the team is expected to do this work,
it needs to be driven through the backlog. At the same time, the investment in security becomes visible
and measurable, and thus manageable.

Also, by scheduling all work through a backlog, product owner have a truthful picture about the project's
status and the work thatis yet to be done.

There are also other published lists of security user stories, for example, SAFECode's 2012 paper (see
references).

Using Generic Security User Stories

Except for very special cases, it is very probable that consistently implementing these user stories will
satisfy even the pickiest customers. These user stories reflect the security needs that are commonly
found in network-facing services, cloud software, and their clients. They reflect (but do not directly
copy) the existing security standards such as the ISF Standard of Good Practice, ISO/IEC 27002, and
secure software development lifecycle models such as BSIMM.

Not all user stories apply to all kinds of software. For example, a client on @a mobile phone probably does
not do audit logging. Thereis a table which helps you to select the correct user stories that apply in your
case. The stories here have a bias towards a cloud-based software system. Embedded software and
hardware security might require stories that we do not cover here.

The user stories would preferably be used by the product owners to populate their product backlog
when starting anew project, but can, of course, be added to an existing backlog as well.

Itis possible that the number of stories feels large. However, the requirements defined here are usually
considered to be valid. If your product backlog size will double after addition of these stories, it may be
useful to pause and think whether the backlog was complete in the first place with regard to all other
quality aspects. Are you expecting the development teams to implement hidden or unstated require-
ments? Is all the quality-related work, test case creation, and documentation work made visible?

Most acceptance criteriain the security user storieslist ask for test cases to be created. They do not ex-
ist only for checking the implementation of the user story, but also for the sake of building an argument
later for any third party. In this role, a test case is better than documentation. Documentation is just a
snapshot in time — a test case evaluates the current status of security every time it is run. For most of
the test cases, theintentionis that the test would be runin test automation. There are a handful of tests,
mainly exploratory security testing, which would be difficult to automate, but the bulk of tests should be
runagain and again.

Larger security themes

Although all stories listed here are standalone, they can be split into larger categories, or themes. Many
of the stories also have a connection to some other quality aspect. This table shows these themes and
relationships.

Theme

User Story

Access control and user management

User data model

Account lifecycle

Access control policy

Access controlimplementation
Administration access

Software security activities

Architectural threat analysis
Interface robustness

Third party security assessment
Cryptographic key management

Compliance and preparing for incidents

Availability

Business Continuity
External security requirements
Backups

Notifying users

Accessible Privacy Policy (PP)
Notify of T&C and PP changes

Logging

Audit log of security activities
Audit log of personal data access
Log event separation

Protection of log events
Standardisation of log events

Managing the software asset

Patching and upgrading
Change Management
Component inventory and origin

Detection capabilities

Monitoring
Enabling intrusion detection

Content management

Malware protection
Content takedown
Legalinterception and access

Operational environment

Platform hardening
Network architecture

Separate development and production

Story selection matrix

Not every story is applicable to every product. As an example, if the product has no server-side com-
ponent, many requirements concerning logging may vanish. On the other hand, if no user data is being

handled, itis a fairly safe bet that it doesn't need to be protected, either.

In order to help to quickly narrow down the set of user stories that apply to a specific project, the fol-
lowing selection matrix (divided in two parts purely for layout reasons) can be used. By answering each
questionin the first column, you can find out which stories should be pulled on the Product Backlog, as

indicated by the corresponding column.

¢.pnope
uy, 1o, paisoy,,
Wwa1SAS JnoAk
joyiedes|

¢Ylomiau
e J1aAo uol}
-ewliojul 1oy
-sueJinoA oqg

¢(Aler0wal
10 Ajje2oy))
wia1sAs Jayro
Aue yyum asey
-123u1nok oQg

(suoseal
U121 104
Sjunodde
195N JuaayIp
aneynoAkoqg

¢, Jawoisnd,,
eseylew
.Jonpoud, e
Wi21SAS IN0A S|

Cu@IINIBS,,
e JayonokoQ

£, Unod

-JeJasn, e
jo3idaduooe
aAeynoAoq

¢dasn
e Aqpaieald s
10 01 s8uojaq
1eyyeep
aAeynoA oq

¢Jasneinoge
uoljewiojul
ssadx0.dnoA oQg

uon
-eJedas
JUDAD
307

ssadoe
elep
stad
10 30|
1pny

sal}
-1Anoe
29s
10 30|
pny

So

-Sueyd
ddpue
oL A

—ON

Ao)10d
Aoeapd
a|qls
-S900y

sjyuaw
-aJinb

-al
J9s |eu
-191x3

Anu
-3u0d
ssau
-isng

—[leAy

Jusw
-Ssasse
BEH
Ayied
ple

ssau
-)snqo.
ERLEH
S]]

SIS
-Ajeue
1834yl

Y21y

‘|dwi
|0J3U0d
SS9J0Y

Ao)0d
]013U0D
SS90y

Elp)
-K23417
JUN0d

|apouw
elep
1950

¢.pnope
uy,, 4o ,paisoy,,
WI31SAS InoA
joyledes|

Mlomiau
e I2A0 U0
-ewiojul 134
-suelynoA oqg

ﬁ_?_wuoEw_
10 Ajjeaoj)
wa3sAs Jayro
Aue yym asey
-133urnok og

(suoseal
1UD1941p 104
Sjunodde
19SN U1 4Ip
aAeynoAoq

¢, 1aWwoisno,,
eseyieyy
.3onpoud, e
W21SAS IN0A S|

Cu@IIAIBS,,
e lajonoAkoQ

¢.unod

-de 1asn,, e
j01dasuooe
aAeynoAoq

¢4asn
e Agpaiealds)
1003 s3u0|aq
jeyyeiep
aneynoAoq

¢Jasneinoge
uolewJojul
ssaso.idnoA oq

AUD
po.d
3 A3p
21el
-edag

Ssaooe
uliwpy

EJhES
-1yaJe
MI0M
-19N

3ul
-uap.ey
w.oy
-le|d

juawl
-a3e
-uew
EN
01dA1D

sdn
-oeg

SS92
-oeR
uof3das
-191Ul
1e8a

umop
-9ye}
Jualu0)

uon
->910.4d
21em
-IeN

uo}
-2919p
uols
-nJaul
sulq
-eug

3ull0}
-IUON

Aioy
—UdAUI
juauod
-wo)

W
-o3e
-uew
?3uey)

Suipe.3

-dn
pue 3ul
-ya1ed

SJUDAD
30| j0
uon
-esi|pJe
-pueis

SIUIND
30| J0
uon
-39)0.d

The Generic Security User Stories

Duetoits length, the complete list of Generic Security User Stories can be found in an appendix of this
book.

Experiences of Using Security User Stories

Many ICT companies havein the past relied on using arelatively static set of generic security baseline
requirement as a basis for ensuring that their solutions are capable of providing appropriate security
mechanisms to prevent security incidents from taking place. There are some often quoted sources for
suchrequirements, e.g., RFC 3871and ANSI standard T1.276-2008 (see the references).

When transforming a development organisation from using traditional waterfall methodologies to-
wards an Agile way of working, it can be difficult to ensure that the baseline security requirements will
get properly addressed in Agile requirement flow because the individual requirements have no User
Story context thus not making their way into the backlog.

Our practical experiences of augmenting the generic security baseline requirements with a selection of
Security Epics and Security User Stories have been both positive and illuminating. The main positives:

>> Motivation for the requirements is easier to communicate through a User Story

>> Severaldistinct, but associated requirements can be collected into an Epic containing a number of
User Stories, bringing clarity to the associations

>> The Security User Stories are much easier to attach to the backlog thanisolated genericrequire-
ments as the requirements now have a specified context

>> Asthe Security User Stories now are contained in the backlog, they get handled in the same man-
ner as any other user stories in each sprint, e.g. they get prioritized, they get considered in "“Defini-
tion of Done”

>> Verification of effectiveness of security controls becomes more accurate
>> Security objectives also become clearer as the focus shifts from "a product needing to contain
some specific security functionality to “a product getting protected by the use of the security

functionality”

>> Security awareness across the development organization(s) increases as development teams get
exposed to Security User Stories

As our company still operates amidst waterfall and Agile transformation, we intend to keep both the
baseline security requirements and the new agile version of it up to date.

References

SAFECode: Practical Security Stories and Security Tasks for Agile Development Environments, July
2012. http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf

Dean Leffingwell and Juha-Markus Aalto: A Lean and Scalable Requirements Information Model for the
Agile Enterprise, 20009. http://scalingsoftwareagility.files.wordpress.com/2007/03/a-lean-and-scal-
able-requirements-information-model-for-agile-enterprises-pdf.pdf

Dean Leffingwell: Agile Software Requirements: Lean Requirements Practices for Teams, Programs,
and the Enterprise. Addison-Wesley, 2011.

IETF RFC 3871: Operational Security Requirements for Large Internet Service Provider (ISP) IP Network
Infrastructure. http://tools.ietf.org/html/rfc3871

ANSI standard T1.276-2008, (ATIS-0300276.2008[pre-pub]): Operations, Administration, Mainte-
nance, and Provisioning Security Requirements for the Public Telecommunications Network; A Base-
line of Security Requirements for the Management Plane. https://www.atis.org/docstore/product.
aspx?id=24660

Security in
Agile Produc

Executive summary

Agile development practices can be used to create security-sensitive software, and software security
practices can be driven through an agile process. This chapter discusses how software security engi-
neering practices can be mappedto various agile product management concepts. The basic tenet is that
work needs to be made visible, and as the main vehicle for that is the product backlog, the article con-
centrates on how software security work can be put on the backlog.

Introduction

This article is a product of along evolution, tracing its roots to a workshop organised by the Finnish In-
formation Security Association and Agile Finland. Since then, the message has been reiterated a few
times, and this article reflects the current view that the author has.

Thisis by no means unique work. Security in an agile setting has been discussed by others. For example,
see the section on "“Existing frameworks for risk and security management in agile software develop-
ment" in the paper onrisk management in this book.

A short list of prior work in this areais in order; you can find the pointers to these from the references
section. Microsoft's SDL-Agile, a mapping of Microsoft's Security Development Lifecycle to an agile de-
velopment methodology, suggests dividing security activities into distinct classes that would be ex-
ecuted with a varying cadence. Rohit Sethi's InfoQ article concentrates on security qualities that are
not user stories or attacker stories, arguably something that is the hard part - and his article should be
required reading in addition to this one. SAFECode’s paper on security-related stories has a particularly
good section onresidualrisk.

The viewpoint of this articleis decidedly in the domain of product management. The argument goes that
unless an activity or a requirement is visible and gets time allocated to it, it is unlikely to happen. Also,
development methods that are often dubbed “agile” such as test-driven development and extreme
programming, can be used in non-agile product management setups as well, and hence their inherent
security properties do not necessarily have anything unique to agile.

Concepts

What Are Software Security Activities?

Finding inspiration for software security activities is easy. Figuring out exactly which of these to drive
is trickier. Various sources are brimming with activities that either someone does, wants to do, or tells
you to do. Some studies, such as BSIMM by Cigital, a consultancy, are descriptive in nature: BSIMM's
2013 releaselists 112 distinct software security activities, aresult of extensive surveying, that someone
somewhereintheindustry performs. Whether or not each of themis applicable to your situationis up to
youtoanalyse. Some other sources, such as OpenSAMM by OWASP, a web security community, and the
‘Fundamental Practices' paper by SAFECode, anindustry forum, are more prescriptive and tell what you
ought to be doing. Unless you are already familiar with these resources, the reader is encouraged to go
and have a quick look — it will clarify many aspects of what will follow.

Inpractice, you willfind very similar things in all of these. The differences emerge in the way you slice and
dice the activities when trying to actually do them.

Each company hasits unique set of business, technology and cultural constraints, soitis not possible to
give a detailed one-size-fits-all guideline. However, most companies would do well by making sure at
least the following practice areas arereflected in their software development activities:

>> Security risk analysis: An activity that attempts to determine who might want to attack your
software, why, how, what would be theimpact, and how this risk could be mitigated. Thisis often
referred to as "threat modelling or “architectural risk analysis". As aresult, you should expect to
see new and changed use cases, requirements, constraints, and test cases.

>> Setting and enforcing a set of development-time constraints and guidelines: These activities
can vary from mandating the use of a specific framework to using static analysis to identify bugs
in code. These require understanding how your technology choices (e.g., choice of language or
framework) contribute to potential vulnerabilities.

>> Security testing: Positive testing for security controls and negative testing that probes the “mis-
use cases” of software. This can be exploratory or automated, examples being freeform manual
penetration testing and fuzz testing (a type of fault injection test). This should get its input from
therisk analysis.

>> Vulnerability management: A set of activities that ensure that your company hears about vulner-
abilities in the code you deliver or use. This addresses things like upgrading and patching vulner-
able components.

There are other practice areas (e.g., massaging your top management to buy into all this) that should be
addressed as well, but here we only discuss the activities that strictly fitinside the core software devel-
opment process andits immediate assurance activities.

Typically, companies start with security testing and reactive vulnerability management, and then make
their way towards more proactive security if they feel the business need for it. Unfortunately, many
companies don't see this need until they're hit. Some reasons for this can be that customers do not
very often require evidence of software security, and bad things are statistically speaking rare and not
normally distributed, and information about them is not publicly shared. However, there are some de-
velopments that may actually cause customers to ask for it: In Finland, the VAHTI application security
guideline of 2013 will be the de facto requirement for public sector procurement, and globally, ISO 27034
is likely to have a large effect. Microsoft already declared conformance of their SDL to 27034-1in May
2013.

Driving security in agile product management

Risk and investment

Each software security activity is aninvestment, and hence it needs to have a business reason to hap-
pen. A good way to find this business rationaleis to base all security activities onrisk analysis. If risk
can be quantified in monetary terms, it instantly gives an upper limit for the security activities' accept-
able cost.

The difficult part is that risk has two factors: impact and probability. And the probability is very hard to
pin down. Still, even a token attempt to quantify the risk helps in determining what type and level of
mitigation makes sense and what obviously doesn't. On high level, the risk-based software security
development activities start with modelling the attack and performing architectural, or design-level,
risk analysis. This tells you what sort of attacks are plausible, what your attack surface looks like, and
essentially creates abacklog of security features (controls) and various tasks (such as testing) thatare
assumed to mitigate the perceivedrisk.

This also makes it possible to assess the security of the resulting product or system: For eachidentified
risk, some evidence of the mitigation and control activities should be later available. This forms the basis
for mature software security assurance.

Classes of Software Security Activities
For the purposes of this essay, software security activities are divided to three groups:

1. Functional features. These are the “security features' or controls, typically things like authentica-
tion systems, logging, using a security protocol to protect confidentiality of transferred data, and
privacy-related user stories such as prompting for user consent. What makes them “functional”
is the fact that they can be seen as new feature development, and there can usually be a posi-
tive test case that verifies whether the functionality works "'to specification”. Of course, security
features can also have security bugs - but finding those belong to the next two categories of
activities.

2. Engineering tasks. These are security-related tasks that need to be done. A task has a beginning
and an end. Some tasks are one-shot and some are recurring; however, even the recurring tasks
are "done' at some point. An ongoing concern that never ends is not a task for our purposes here.
Security-related engineering tasks include, for example, doing risk analysis and performing an
exploratory test run.

3. Ways of working. These are security-related concerns that may include work, but are “never-
ending". Some concerns might not be actual work, but morerelated to how things ought to be
done. Examples include secure coding guidelines, actively keeping your top-N security bugs listin
the developers' minds, and keeping up to date with open source components.

Work Made Visible

Thereis one vehicle for getting stuff donein an agile process, and that is the Product Backlog. This is
thelist of work that needs to get done. Whether or not the items on the Product Backlog (for which |
will use the term Backlog Items) get consumed in Scrum sprints, or on a kanban board, or through some
other agile methodis mostly irrelevant for our discussion here.

Theimportant thing to understandis that unless a work itemis on the Product Backlog, it might not ex-
ist at all. A well-oiled and mature team could still produce it, but as it is not strictly required, you cannot
really tell in advance whether it will get done. Also, unlike a Product Backlog item that gets archived as
being complete, something done automatically on the side might not leave evidence behind. If you are

looking for a security assessment or a higher level of security assurance, activities without evidence
are very hardto prove.

Let's take an example from Scrum. Scrum teams are expected to deliver a “shippable” increment after
every Scrum sprint. This means that the additional functionality implemented during the sprint has to
be on a high enough quality level to ship — it doesn't meanit has to be feature complete. This is known as
"Done’" and the criteria that the team applies to know whether thisis trueis often known as the "“Defini-
tion of Done".

It would sound realistic to add security aspects to the Definition of Done, right?

Unfortunately, this may only be successfulif the development team s one of the rare ultra-mature per-
formers who can stand up to their rights when threatened with a loss of incentive bonuses. In the real
world, work thatis dictated by the team'sinternal quality criteria often gets omitted and skipped, pushed
to future (oftenintoa “hardening sprint”), and to an outside observer, it justlooks like the teamiis taking
far too much time to deliver functionality. When you take a few steps back from the development team,
a plush Definition of Done looks like overhead. And overhead is a prime candidate for “optimisation”.
Therefore, one of the key targets for driving software security in an agile product creation process is
to always aim for the Product Backlog. The Product Backlog can, fortunately, accommodate for vari-
ous different kinds of requirements. In addition to the bread-and-butter functional features, Product
Backlogs can also carry something called Acceptance Criteria. These can be thought of as Backlog Item
specific mini-Definitions of Done. Acceptance Criteria may be extremely useful for security engineer-
ing, as we seein the next section.

In addition, not everything on the Product Backlog needs to be a functional feature. Product Backlog can
be usedtodrive any kind of tasks that have abeginning and an end. Implementing a specific test case for
test automation, for example, can be a Backlog Item.

With these alternatives in mind, let's see how the different kinds of software security activities can be
driven on the Product Backlog.

Putting Software Security Activities on the Product Backlog

Earlier, we classified software security engineering activities into three classes: functional features,
engineering tasks, and ways of working. Each of these can be driven on the Product Backlog.

"Functional features” are the easiest: Just create a user story to implement the feature, and add it on
the backlog, and drive the work as usual. Sometimes, however, it is difficult to say exactly what to do. It
is very typical, for example, that architectural risk analysis (threat modelling) turns up arisk, but it is not
immediately clear how it should be tackled. Instead of a user story, an option is to create an “attacker
story” instead (Sindre and Opdahl, see references, called this a “misuse case”). Whereas user stories
specify what users should be able to do in order to provide some value, attacker stories specify things
that should not happen. Attacker stories act as placeholders on the Product Backlog, and theideais that
developers will transform them into actualimplementable security controls, engineering tasks, or ways
of working later on. This can happen in whatever way user stories are usually processed — whether it
is in Sprint Planning, Backlog Refinement (a.k.a. Grooming), or within the 5 to 10 per cent designer time
allocation that many advocate for backlog maintenance work. Adding an attacker story on the Product
Backlog makes theissue visible,and ensures that it is not forgottenin some obscure corporaterisk reg-
ister, an Excel sheet, or ato-do list on a sticky note.

"Engineering tasks that are one-off”” are also easy: The Product Backlog is a good way to drive them
as well as functional features. However, tasks on the Product Backlog are not intended to live forever.
They get prioritised, consumed, and done. Resurrecting a recurring task again and again on the backlog
is against the spirit of the backlog.

"Recurring tasks’ can be tackled in two ways. A natural question is to ask whether something that re-

curs could actually be automated. There are some software security activities that lend themselves
quite well for automation — as an example, fuzz testing, static analysis, and basic vulnerability scanning,.
In these lucky situations, you could create Product Backlog item that is a task to automate something.
Once the automation task has been done, the actual engineering task is automatically run in whatever
build or test automation or deployment system you have. It then recurs without having to appear on the
product backlog.

Of course, many security engineering activities are difficult to automate, threat modelling or architec-
tural risk analysis being an example, and stillrecurs again and again as new features areintroduced. One
part of the solutionis to ensure that the activity is so well facilitated and trained that development teams
can do it asindependently as possible. The other part is to add the activity into the Acceptance Criteria
of existing features. The Acceptance Criteria are usually the quality criteria that apply to that specific
feature, and whether they have been metis evaluated before the backlogitemin questionis accepted as
being complete.You could think of them as a backlog-item specific Definition of Done.

An additional bonus of using acceptance criteria to drive recurring engineering tasks is that not all fea-
tures are equally risky. A minor modification of the user interface opens less attack surface than open-
ing a new REST API to the big, bad Internet. You can, for example, selectively apply threat modelling
as an Acceptance Criterion to a feature based on whether the feature “looks" risky by some heuristic.
Some organisations have a concept of a “Definition of Ready", or “Ready for implementation”, whichis a
kind of checklist whether a backlog item is well enough specified. Triaging features and adding security
engineering tasksinto their Acceptance Criteria can be done at that stage.

Once an engineering task is part of Acceptance Criteria, the great thing is that if the feature will be
dropped, allthe now useless work goes with it. Similarly, if you try to estimate the size of abacklog item,
having time-consuming security engineering tasks tagged to it will make that work explicitly visible.

"Ways of working" are probably the trickiest software security activities to drive. Many of them aren't
“work' in the traditional sense but instead about "how" to do things.

Many ways of working can be distilled — at least partially — into checklists. Coding conventions, training
needs for your organisation's top-N bug lists, configuration parameters and APl security guidelines can
all be checklists. And once you have a checklist, you can define a task to go through the checklist. And
finally, once you have this (recurring) task, you can treat it as an engineering task that you can add to the
Acceptance Criteria like any other engineering task as previously discussed. Typically, coding conven-
tions could also be automated through introduction of static analysis or linter tools.

This leaves a category of "software security activities that are too fluid or poorly understood” to be
checklists, and that aren't really tasks. One example could be how fundamental technologies are se-
lected. For example, some web frameworks take care of various web vulnerabilities out-of-the-box,
and this could be animportant consideration when selecting what technologies to use.

Thereis no really good mapping in a typical backlog process for this sort of activities. Some organisa-
tions running Scrum have something called “Sprint Zero", which is a themed sprint used to do stuff that
needs to be done only once and preferably before doing anything else. However, this category of activi-
ties is clearly in the minority. Selecting the right underlying technologies is a fairly effective and critical
software security decision, but beyond that, mostimportant software security activities fallinto one of
the earlier categories.

Evidence and assurance

Agile methods are often accused of being light on evidence. This probably stems from the Agile Mani-
festo that says “[..] we have come to value[..] working software over comprehensive documenta-
tion". Thisinvokes a mentalimage of a chorus of engineers singing "“we don't need no documentation”,
although allit actually says s that the Manifesto signatories value getting things to run more than they
value paperwork.

If youdon't need to prove anyone but theimmediate development team that you are secure, then you
actually could throw documentation out of the window.

However, if you have a customer, a certification body, a regulator, your Privacy Officer, or some com-
pany internal control functionthat wants to see some evidence, youneed to generate that evidence. The
good thing is that the evidence does not necessarily have to be a traditional paper document, and even
if such athing would be needed, you canrunit through the backlog. Let's first consider a case where you
need to actually produce a paper document for a third party, say, a regulator, for a one-off certification
effort. Inthe classification of software security tasks, above, that would be a non-recurring engineering
task. This means that you can just stick this work on the Product Backlog and prioritise it accordingly.
If the document is a collection

of design specifications, you Software Security Adtivities
canalsodriveit as aset of Ac-
ceptance Criteria spread over | Security Features - Security Engineering Ways of Working
all the features that need to Actual security controls required Tasks to increase software security: Stuff to keep in mind:
be documented. This makes such as Threat modelling, Following secure coding

' authentication, logging, security testing, guidelines, being conscious
the document to appear as security protocols, etc. static analysis... about a top-N bugs list, etc.

a proper project deliverable,
and not as additional over-
head. It makes the work vis-
ible, and the time investment
has to compete with other
activities that produce value.
Let's say that the document
would be required for just a
single customer; this would
force product management
to decide whether the cus-
tomer is important enough Attacker Story Feature One-off Task

to vvla.rrant the work. Bey(,)nd Ades.cri;ti;n'of's;m.etl:ir:g bad Afuncti;n;l t:ac.kl;g item - .A;a;kl.og.ite.m.to.

traditional documentatlon, that should not happen, not necessarily a automate something or a single
ag”e methods offer ample expressed in non-technical terms security feature one-off task with

L . a beginning and an end
possibilities for extracting

evidence of software security 'I'he PI'OdUd BUCklOg

activities. When designing

your eviqence gathering, you Summary of how security activities end up on the product Backlog
should think about:

00 PTGy
25D 31 33

Acceptance criteria

LRCECE Y

— ORI SUDAUL I 104 s

>

3

S
Jelopers nters, >
05 Lo 5

>> Do youneedto present the evidence proactively, or isit enough if you canlocate evidence during
an audit or whenrequested? (l.e., can we have “lazy" evidence - if you can pull this off, this is likely
to be more cost-effective.)

>> How far away from the actual end product - typically executable code or system configuration
—does the evidence stray? Is the evidence about the end product or the creation process? Which
one do you need to collect?

>> (Cantheevidence stand up onits own so that a third party can plausibly believeinit, or would the
third party have to have full trust in you before they can trust the evidence?

With this in mind, you can use the following sources of evidence in an agile process. The fun thing is that
unless you need to collect this data up front, the overhead in these is either minimal or effectively zero
during the development.

>> Product Backlog items that have been completed and archived. These can be probably retrieved
from the backlog management system as required. The author was made aware of a company

who used paper-based kanban cards that, once the task was completed, were physically signed
off by the product management and the lead engineer, scanned, and archived. Although this sort
of evidence requires alevel of trustin the overall process, the granularity and incremental sign-off
of tasks makes it easier to trust than a single, all-encompassing claim that “we’'ve done what we
are supposed to have done'.

>> Product Backlogitems that have not been completed. If, for example, you run a threat modelling
activity and as aresult, generate new Product Backlog items for controls, and those haven't been
done, they still count as evidence of risk management activities having been performed. If all the
risk controls have been put on the backlog, the security controls that haven't been done are your
residual (remaining) risk. You can therefore more easily quantify your system's residual risk in
technical terms.

>> Test cases (perhaps in test automation) that pass. You can show what security tests you are do-
ing, and which of them pass. This is evidence that directly relates to the executable code.

>> Static analysis findings (perhaps runin continuous integration). You can either get areport of
raw findings, or you can set a baseline and show that the error density has notincreased, or has
decreased. This, again, is direct evidence of source code security.

References

Bryan Sullivan: Streamline Security Practices for Agile Development. MSDN Magazine, November 2008.
http://msdn.microsoft.com/en-us/magazine/dd153756.aspx

Rohit Sethi: Managing Security Requirements in Agile Projects. InfoQ, June 2012. http://www.infoq.
com/articles/managing-security-requirements-in-agile-projects

SAFECode: Practical Security Stories and Security Tasks for Agile Development Environments, July
2012. http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf

Antti Vahd-Sipila: Software Security in Agile Product Management, 2011. http://www.fokkusu.fi/agile-
security/

Notes and presentations from the workshop on secure software development and agile methods, or-
ganised by the Finnish Information Security Association and Agile Finland, April 2010: http://confluence.
agilefinland.com/display/af/Secure+software+development+and+agile+methods+-+notes

Guttorm Sindre and Andreas L. Opdahl: Capturing Security Requirements Through Misuse Cases, 2001.
http://folk.uio.no/nik/2001/21-sindre.pdf

Security ac
in scrum cc

Ville Ylimannela, Tampere University of Technology
Marko Helenius, Tampere University of Technology

Executive summary

In this chapter are mapped important control points in Scrum and described what security activities
should be performed in the control points. The security activities discussed are: security templates,
threat assessment, feature flagging and residual risk approval. The criteria used to judge the activities
are: documentation, customer interaction, speed of execution, simplicity and security. Control points
in which the security activities are applied to are: the product owner, sprint planning and sprint review.

Scrum control points

By a control point we mean a point that can be used to affect the Scrum process. Both people and meet-
ings can be seen as control pointsin the process. In Scrum there is one crucial role, whichis the product
owner. Product owner is single-handedly responsible for adding items to the product backlog and con-
stantly prioritizing and re-organizing the backlog. It is also the product owner's responsibility to decide
whether the software goes out at the end of a sprint <<FootNote(see Microsoft 2012a)>>. In short, the
product owneris the gatekeeper for everything that comesin and goes out. Thisis a crucial control point
inthe Scrum process.

The problem here s that the product owner, whois responsible for the most important thing in the pro-
cess, does not usually receive adequate security training. The product owner is also the only person
in Scrum who does not really know what goes on inside the Scrum team. This means that the product
owner is probably the worst person to decide if the software is secure enough. There are few different
ways of solving this:

>> Getthe product owner moreinvolvedin the process itself and especially security activities.
>> Make sure everything security related is documented and presented to the product owner.

>> Give someonein the team theright of veto to security related issues. This would mean that the
person deciding whether the software is secure enough needs to have in-depth knowledge of the
software andits security.

In Scrum, the team is composed of people who have the required skill set for creating the software
needed. The idea is that everyone can use their own expertise to complete the tasks they have been
given. As the tasks have been completed the person willmove to the next one. This leads to the fact that
every person in the team is also responsible for security. The only person who knows if the task meets
the security requirements of the software is the person performing the task.

Tsee Microsoft, 2012a

Therearealso other control points than the team, product owner and sprint review. Daily Scrum could be
considered as one. During daily Scrum the team gathers up for a quarter of an hour meeting to discuss
recent events and report on personal process on tasks.

Sprint planning is a crucial control point. This is where the team chooses which features they will imple-
ment during the upcoming sprint.If SDL-Agileis used allnew features chosen willhave to be threat mod-
elled. Nevertheless this would be a good time to threat model all the chosen features, since the product
owner would also get involved in the identification process, meaning the users' representative would
also be heard. Most of the every-sprint activities in SDL-Agile are close to implementation, thus they
really are not issues which one might bring up during the meetings. 2

Scrumof Scrums (SoS) meetingis also a control point for the software development process. This means
that teams working on the same software gather up to discuss about large-scale decisions. The higher
we go on the process, the more general the security requirements discussed during the meeting will
be. Daily Scrumis on the low end of the scale while SoS meeting is at the other end, as shown in Figure 1.

Below daily Scrum would be the actual implementation of the
security features and testing required for creating secure soft-
A ware. The basic security requirement can be the same in all ab-

stractionlevels, however, the way it is presented s different. For
Scrum of Scrums example, if the security requirement is “Software need to bero-
bust”, this could take the following forms:

>> S0S: When reading initialization file, the software must
be able to handle securely any file, including corrupted
Sprint planning and potentially malicious one.

Sprint review

>> Sprint review: Features foo and bar were implemented
to prevent crashing if theinitialization file is corrupt.

>> Daily Scrum: Yesterday a team member started implement
. ing feature foo and today there will be fuzz testing with
Daily Scrum corrupted files.

[9A8] UONOR.ASqY

Security requirements
and controls

Implementation » , , _ ,
The definition of security requirement varies. Microsoft SDL

(Security Development Lifecycle) identifies security functional
requirements as follows: A security risk assessment (SRA) is a
mandatory exercise to identify functional aspects of the soft-
ware that might require deep security review". In SDL's case
security requirements are strongly linked with risk assessment.
The security requirements are risks identified during the assessment. All the security activities in SDL-
Agile could also be considered as security requirements, which must be metin order to the software be
released at the end of the sprint.

Figure 1: Abstraction level of
security issues discussed

In SDL-Agile, the baseline for the threat modelis usually created at the beginning of the project. As new
risks emerge the model will be updated every sprint. What this means is that security requirements will
continue to evolve throughout the software development.

There are different ways of identifying security requirements. As risk management in general, the pro-
cess of identification usually starts with gathering required material of the software.

2 see Microsoft, 2012¢

This should include at least: 3

External entities
Processes
Datastores
Data flows

AW

When this is done, it is time to start identifying threats. This can be done using STRIDE or some other
security risk identification method. The focus here willnot bein functional requirementsidentified at the
risk assessment, but the risk assessment itself, which is also a security requirement. 4

Another way of identifying security threats are security stories and abuse cases. Security stories are
templates which address users' security needs such as "I need to keep my contact information hidden.”
or "I want to know where my account was used last time". These requirements are later translated to
positive functional requirements such as "keep track of the user's IP address". Security stories work
wellinidentification of privacy issues, but might not be quite as useful against other security problems,
such as buffer overflows or cross-site scripting vulnerabilities. The abuse cases are very similar, but
they are from the attacker’s point of view; the product owner might lack the expertise to solve a prob-
lem, but he or she can tell what should not happen. s

Despite the method used in identification, after the identification it is time to apply mitigations to the
threats discovered. This could mean using encrypted connection for data flows, re-designing old code
or even accepting the risk, when nothing can be done with the given resources. Having identified the
threats does not make the software secure. It also requires a working implementation of the mitigation
chosen.

The mitigations used are dependant on the requirement, thus a deeper look for potential mitigation
methods is out of scope. The bottom lineis, however, that there are two parts during which the security
requirements will consume resources from other tasks: Identifying the security requirements/threats
and applying controls.

All requirements can be split to functional and non-functional requirements. Functional requirements
are often more specific and tell how the software should act, when doing something. An example of a
functional requirement could be “When a user presses ESC a menu window will pop-up". Functional
requirement should always be positive and it can be tested somehow. This is not the case with non-
functional requirements.

A non-functional requirement specifies criteria which the software must meet. “Software needs to be
secure” or "Software needs to be able to handle 100 simultaneous users' are both non-functional re-
quirements. Non-functional requirements can often be translated to one or more functional require-
ments, which the team willimplement during a sprint.

Security activities within control points

The focus in Scrum meetings is on large scale issues rather than on single vulnerabilities.This means,
that the implementation of the chosen security controls is not usually discussed. The idea is to identify
security risks and assign the right tasks to the right people. Moreover, sprint review serves as a point
during which risks are accepted or the software is not published, if residual risks are too high. The most
important control pointsin the Scrum process are:

1. The product owner, the person who is responsible for features which are added to the backlog and
accepting the end results of a sprint.

2. Sprint planning. This is where the team decides what features will be implemented and who
willimplement them.

3. Sprintreview, presenting the result of a sprint to the product owner

3see Shostack, 2007
4 see Microsoft, 2005
5 see Vahi-Sipild, 2010

There are also other control points in the process. However, they are not so crucial from the security
point of view. The process could also be modified if needed, for example, by adding an additional weekly
security meeting. This could be useful when creating software which requires high level of security. The
goal is not to create new control points for Scrum, but use the three existing control points. The focus
willalso be on understanding how the non-functional security requirementsin Scrum control points will
affect security of the software and how much resources will be required.

The next questionis what type of security activities can be deployed in the control points. In the control
points mentioned above, the security activities should be as non-technical as possible. Technical prob-
lems can be solved by transforming non-functional security requirements to functional requirements
and implementing them. The security activities chosen are:

1. Security and abuse cases: These can help the product owner to identify privacy related
security problems.

2. Threat modelling/Risk assessment: This is one of the key activities in SDL-Agile, which
should be performed each sprint. According to SDL-Agile, allnew features need to be
threat modelled. Naturally some features will take more time than others.

3. Approvingresidualrisks, an activity for sprint review: If arisk is identified it will be either
mitigated or accepted. Ignoring to do anything is the same as accepting it.

4. Filter, which canbe used to flag potentially risky features or tasks.

Most security activities can be done as tasks during the sprint as opposed to the Scrum meetings. We
will next present what effect they might have in a specific control point and would they be better as
separate tasks. The criteria used for judging is loosely based on the work of Keramati and Mirian-Hos-
seinabadi®. The criteriais shown below in Table 1.

Criteria, the level of... Reasoning

documentation Creating and reading through documentation is a slow process,
this should be avoided when several people are gathered.

customer interaction The representative of a customer usually attends the meetings.
This could be a good time to ask questions.

speed of execution Things which consume lot of time should be avoided during
Scrum meetings.

simplicity, minimizing extrawork | Reducing useless overhead is what agile software development
isaiming for.

security All the security activities will increase security, some more than
others. Privacy issues areincluded in security.

Table 1: Criteria and reasons.

Product owner

The suggested security activity is to use security templates and to guide the product owner in creat-
ing non-functional security requirements, which can later be translated to functional requirements by
the team. This should be a relatively fast procedure, especially if the security template is one-pager as
Vdhd-Sipild suggested’. The criteriais in Table 2.

6 see Keramatiand Mirian-Hosseinabadi, 2008

see Vaha-Sipild, 2010
'

Criteria Properties

Documentation The required documentation is a short checklist, which fits the agile
principles well. The documentation created consists mainly of new fea-
tures.

Customer interaction Customer interactionis needed when identifying security issues. How-
ever, the person performing the identification is the representative of a
customer.

Speed of execution Skimming through the features and trying to identify privacy risks is a
relatively fast process. Thelistis not perfect, so it does take some time.

Simplicity, minimizing ex- | Product owner understands the privacy requirements of the software

tra work the best, meaning he or sheis the perfect candidate for the task.

Security Security templates help greatly inidentification of privacy issues. Abuse
cases can also be used to identify security vulnerabilities which should
be addressed.

Table 2: Security templates

It would seem that security templates are a great fit for the product owner. The same principles ap-
ply to abuse cases, which is just a policy decision, allowing the product owner to create negative re-
quirements. If this was done as a task by a team member instead of the product owner it would require
constantinteraction with the customer to understand the privacy requirements. As a consequence the
customer interaction weight would be lower. This would inevitably lead to extra work as well. The return
of investment is expected to be good for security stories, if used by the product owner.

Sprint planning

For this activity there are two tools. The first oneis to perform the actual threat assessment during the
sprint planning and the other is to the flag potentially risky tasks or features and perform the threat
modelling as a task before starting to work on a feature. The criteria for threat modelling during the
sprint planningisinvestifatedin Table 3. The problem with integrating security to sprint planning is that it
is aslow process, which also creates some heavy documentation. It is, however, a cornerstone for good
software security, which makes it mandatory in software that require high level of security 8.

Criteria Properties

Documentation Threat modelling creates a lot of documentation, which is not
suited for agile or control points.

Customer interaction The product owner needs to be present only when the threat is
at product level, and not technical. The product owner's presence
would also be useful if attacker profiles are created.

Speed of execution A slow process and a lot of documentation needed. Using meth-
ods like STRIDE for identifying the threats can speed up the pro-
cess, but it can still take days.

Simplicity, minimizing extra work | Security will always need resources. One of the lean principles is
“earlier is cheaper", which means that also threat modelling will, in
alongrun, prove to be worth the extra work at early stages.

Security Threat modelling is a cornerstone for security.

Table 3: Threat assessment

8 see Microsoft, 2012b

Despite brainstorming being a great way of identifying threats, it is faster than heavy methods like
STRIDE. The other way of doing threat assessment is to perform it as a task before the implementation
of the feature. This means, that features which include high-risk code should be flagged and assessed
separately. Flagging the high-risk features and then performing a separate threat assessment is pre-

sentedin Table 4.

Criteria

Properties

Documentation

Feature flagging does not create much documentation. How-
ever, the documentation will be done during the sprint.

Customer interaction

The product owner’'s presence is rarely required during the
threat assessment.

Speed of execution

Flagging potentially risky features should be a fairly fast proce-
dure.

Simplicity, minimizing extra work

Security will always need resources. One of the lean principles
is “earlier is cheaper”, this way however does eliminate some
overhead during meetings.

Security

If the assessment is performed by several people (during the
planning) security willmost likely improve.

Table 4: Feature flagging

Sprint review

The activity chosen here was the approving of residual risks. The product owner should approve all the
risks which have beenidentified and have not been completely been erased. The assessment is in Table

5.

Criteria

Properties

Documentation

Risk management creates alot of documentation. Risks should be
explained at feature level, but this might lead to reading thought
some documentation to completely understand the risk.

Customer interaction

People using the software need to understand the risks which
areinvolved.

Speed of execution

The product owner needs to understand the risks before he or
she canapprove them. Explaining things might be a waste of time
ina Scrum meeting,.

Simplicity, minimizing extra work

If a risk can not be approved, this should be known as soon as
possible, meaning that the product owner should approve the
residual risks before the meeting. Once again, earlier is cheaper.

Security

The product owner knows the required security level, so under-
standing therisks acceptedis important.

Table 5: Residual risk approval

Customer interactionis in a crucial role when accepting risks on product level. The product owner is the
only person who can accept such threats. Since the product owner will attend the review meeting, itis a
good place to accept risks. The problem might be that the product owner will not accept all the residual
risks. This means that the software will not go out. Ideally therisks should be accepted before the meet-
ing, to avoid any unnecessary delays in the software development.

References

Microsoft. Microsoft SDL. 2012. Available: http://msdn.microsoft.com/en-us/library/cc307412.
aspx#ED1(Cited 11.12.2013).

Shostack Adam. Threat modelling. 2007. Available: http://blogs.msdn.com/cfs-file.ashx/__key/
communityserver-components-postattachments/00-07-70-23-05/TM-Series-2007.doc (Cited
1112.2013).

Vdhd-Sipild Antti. Product Security Risk Management in Agile Product Management. 2010. Available:
https://www.owasp.org/images/c/c6/0WASP_AppSec_Research_2010_Agile_Prod_Sec_Mgmt_
by_Vaha-Sipila.pdf. (Cited 11.12.2013).

Keramati H. Mirian-Hosseinabadi S. Integrating Software Development Security Activities with Agile
Methodologies. 2008. AICCSA 2008. IEEE/ACS International Conference on Computer Systems and
Applications Microsoft. High-risk code. 2012b. Available: http://msdn.microsoft.com/en-us/library/
ee790613.aspx (Cited 11.12.2013).

Microsoft. SDL-Agile. 2012c. Available: http://msdn.microsoft.com/en-us/library/ee790617.aspx. (Cit-
ed 11.12.2013).

Microsoft. STRIDE. 2005. Available at: http://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).
aspx. (Cited 11.12.2013).

manageme

Ville Ylimannela, Tampere University of Technology
Marko Helenius, Tampere University of Technology

Executive summary

Risk management in agile software development is not an easy as risk managementis aheavy process.
However, risk management is a key to increase security and there are ways to integrate it so that the
agile nature of the development does not suffer. In this chapter is presented how to integrate security

into agile development. The most notable changes are summarizedin Table 1.

Activity

Suggestion

Timing

Plan

Identify security needs, make sure the teamreceives adequate
training, create security cases and create attacker profiles.
Create a checklist for high-risk features.

Once before the pro-
ject starts

Identify

Decide whether the feature is high-risk or not. If the feature is
a high-risk, book risk identification to sprint backlog, otherwise
use light methods like brainstorming or delphi technique. Add
identified risks to the risk board.

Before implementa-
tion of the feature

Assess

Try to assess impact and probability of the identified risks. Up-
date therisk.

After identification

Respond

Create responses, make sure they're in proportion to total risk
and theimportance of the feature. Estimate the timerequiredto
implant the feature with the added time from response. Choose
the best responses.

During feature imple-
mentation

Accept

Make sure all the risks are accepted by the risk owner, product
owner or client.

Sprintreview

Monitor

Digitalize the risks and remove the risk from board. Make sure
toinclude all the information. Re-evaluate larger risks between
few sprints.

Between 2nd to 5th
sprints

Table 1: Summary of activities

Introduction

Risk management means identification and prioritization of risks based on their severity, then creating
and applying controls to reduce identified risks. Monitoring risks is also a crucial part of risk manage-
ment. There are two different approaches torisk management, proactive and reactive. Proactive means
planning in advance to avoid risks. Reactive means reacting to risks when they are close to or already

have becomeissues. Focus here willbe on the proactive risk management.

Any introduction to risk management should include the definition of arisk. It can be defined as combi-
nation of probability and impact, which means a risk has two parts: the probability that something will
happen and the actual loss which is suffered, if a risk occurs. Risk has effect at least on one project ob-
jective, which can be anything from consuming extra resources to missing deadline or affecting quality.
A risk which has actually occurred could be referred as an issue. It is important to remember that risk
management is an ongoing process throughout the whole project.

There are several different frameworks for risk management. One in popular use is PMBOK (Project
Management Body Of Knowledge, Figure 1), which, in addition to other things, includes a framework for
project risk management. It is written in very general level, so it can be applied to almost any project,
including software projects.

Analyse

Plan risk - Risk
_ Identif
management entity response

\ Monitor /

Figure 1: Risk management framework as defined in PMBOK

Planning risk management

Planning risk management refers to activities which define how to conduct risk management in the
project, meaning it is done before the actual risk management. Careful planning increases the chances
to succeed in risk management. Planning the risk management should be done as soon as the project
starts. To perform the planning effectively, the risk management team requires the following informa-
tion:

>> Understanding of project scope. Meaning, they need to understand what the project includes and
how important part the risk management is.

>> Risk management requires resources, meaning money, time and people. Resources are important
information when planning risk management.

>> Communications management planis a document, which defines how interactions will occur in the
project. It determines who will be responsible for risks and responses at different times.

>> Schedule management plan defines how overruns in schedules will be dealt with.

>> Qrganizational factors, which include the organizations ability to withstand risks or attitudes
towards risk management. Also there might be some organizational guidelines regarding risk
management, like pre-made risk categories, standardized terms, concepts or templates, rolesin
organization and authority.

After therequiredinformationis available, the project team should have a risk planning meeting. During
the meeting the team will decide on methodologies used, roles and responsibilities, budget, timing and
definitions regarding risks. The output from all this is called risk management plan.

Identifying risks

During this part of risk management the goalis to gather participants and startidentifying existing risks.
These participants might include the project manager, members of the project team, customers, ex-
perts and stakeholders. The important thing is that everyone participating to the project should be en-
couraged toidentify risks.

Risks are at different abstractionlevel, which means they are understood better by the people who un-
derstand that certain abstraction level. This is why risk identification should include people from differ-
ent backgrounds:

>> Anengineer would notice a design flaw or bad solution, which would go unnoticed by others, since
they are not familiar with design documents or engineering solutions.

>> A consumer would notice a problem in usability. For someone who uses computers for aliving, it
might be hard to understand how to design usable interface, and not the most efficient one.

>> Project managers would notice an error in badly planned time table.

>> A stakeholder is the best person to ask: "Are we doing the right thing from the business point of
view?"

There are a whole range of techniques for identifying risks. These include but are not limited to: docu-
mentation reviews, information gathering techniques, checklists, diagramming techniques, SWOT
analysis (Strengths, Weaknesses, Opportunities and Threats) and expert judgement.

A commoninformation gathering technique is brainstorming. It would be a good that the team perform-
ing brainstorming is multidisciplinary. This basically means that the team should also include people, who
are not part of the project team. There are few different approaches to brainstorming. Oneis the normal
free-form approach, in which the team just throws out ideas and improves and sharpens them. Another
approachis a mass-interview, where a moderator asks the team a set of questions. Other information
gathering methods would be interviewing project participants, root cause analysis or delphi technique.
Theidea of root cause analysis, is to take arisk, and locate the underlying causes which might cause the
issue. Deplhi technique is an anonymous questionnaire to project experts.

Checklists can be based on historical knowledge that has been gathered from similar projects. While
checklists are handy, they are far from perfect. The problemis that checklists are never complete. There
are always risks, which are not directly associated with any of the checklist points. It is important to
consider risks which are not on the list. A checklist also needs to be updated as soon as new risks are
found.

SWOT analysis is used to evaluate strengths, weaknesses opportunities and threats involved in a pro-
ject. The analysis usually starts by identifying the strengths and weaknesses of the project organiza-
tion. From theseit should be easier to deduct any threats or opportunities which arise from strengths or
weaknesses. Identificationis usually done by brainstorming.

No matter what methodologies are used to identify risks, the output of this phase will always be the
same: a risk register. A risk register is a crucial part of risk management. It includes a list of identified
risks and alist of potentialresponses. Whileit is not part of risk identification phase to create responses,
itisuseful toinclude any suggestedideas.

Qualitative and quantitative risk analysis

During qualitative risk analysis, the team will prioritize risks based on their probability and impact. It is
important to focus on the highest identified risks first. After the highest risks have been mapped, the
team will perform quantitative risk analysis. The key artifact in risk analysis is the risk register created

as aresult of risk identification. For eachrisk itemin the register, the team will assess the probability and
impact. The probability can be measured by estimating occurrences per year. It can also be done by do-
ing a rough estimate about the chance of the particular risk becoming an issue during the project. The
impact can be measured in several different ways. It can be money, time or resources. Whatever the
method used to describe the size of the impact is the total risk is calculated by multiplying the impact
and probability. The information gained is usually placed to a matrix, which s called as arisk matrix. As a
result of qualitative risk analysis is an updated version of the risk register. In the updated version risks
arein order of magnitude.

In quantitative risk analysis it is numerically analysed the effects of identified risks to a project. This is
only done to therisks of highest magnitude. In some cases this step can be completely skipped.

Risk response

This is the phase of risk management where actions to reduce risks are created. It is important to re-
member that therisk response must beinproportion to therisk. Often there willbe several different po-
tential responses to choose from, some being more efficient than others. There are different strategies
for dealing with threats. The risks can be avoided, transferred, mitigated or accepted. Each risk will be
given arisk owner meaning the person who is responsible for reducing and monitoring the risk. Avoid-
ing risks means changing the project management plan in a way that completely eliminates the risk.
Usually itis not possible to completely avoid a risk. However, if a risk arises early in the project, it might
be completely avoidable by changing the strategy, clarifying requirements or acquiring some special
knowledge.

Risk transfer means outsourcing some of the negative impact to a third party. This is often
done with financial risks via insurances, or buying an extended warranty for devices. The idea
of risk mitigation is to effect the probability or impact of the risk. Since the total risk is calcu-
lated from both of these factors, reducing either one will lower total risk. If possible, one could
also reduce both factors. In some cases it is not possible or economically viable to do anything
for the risk, which means the risk is accepted. The accepted risks are called residual risks. At
the end of this phase, the risk register should once again be updated. The update should include:

>> Risk owners and their assighments
>> Budget for the chosenresponses
>> Chosenrisk responses

>> Acceptedresidual risks

Also, if there are changes to the project management plan due to the chosenrisk responses it should be
updated as well.

Monitoring and controlling risks

In this phase, therisk responses created in the last phase will be implemented. After the implementation
the monitoring will begin. The person(s) chosen in the last phase as risk owners will be responsible for
applying risk reduction procedures.

Risk register must be updated during this phase as well. The monitoring might often lead to identifying
new risks. Some of the risks in the risk registerer might be outdated due to effective risk management
procedures. It is of importance to audit whether the applied risk reductions are working. Monitoring
should be done until the project ends. Risks should be reassessed on several occasions, since new risks
will arise and old ones will disappear. Reassessing the risks would basically mean jumping back to iden-
tifying risks.

Existing frameworks for risk and security
management in agile software development

There have been some suggestions for merging security, not necessarily just risk management, with
agile practises. Despite the fact that they are not directly about risk management, the models present
some very useful ideas. This chapter presents four models for adding security or risk management to
agile software development.

MSDL agile

MSDL (Microsoft Secure Development Lifecycle) is a security assurance process, which focuses on
software development. It works best when used in waterfall or spiral based software development cy-
cles,and notin agile methods. MSDL has played large role inintegrating security as a part of Microsoft's
products. The goalis to reduce the number and severity of vulnerabilities in software.

Microsoft has developed an agile version of MSDL. The difference between normal MSDL and MSDL ag-
ile is that not all requirements are meant to be completed every iteration. The idea behind MSDL agile
is to fuse the concept of secure software development with agile methodologies. Since there are no
development phases (design, implementation, verification, release) like in classical waterfall-based
development, some adaptations have been made. Also the short iteration time makes it impossible to
complete all tasks on every sprint.

MSDL agile divides requirements to three categories:’

>> Onetimerequirements.
>> Bucket requirements.
>> Every sprint requirements.

One time requirements

As the name implies, these tasks are completed only once during the project lifetime. These require-
ments are completed at the start of anew project, or when you first start using SDL-Agile with an exist-
ing project. The SDL-Agile one time requirements are fairly simple, apart from creating a baseline threat
model. All SDL-Agile one time requirements are not meant to be completed during the 1st sprint, since
in addition to one time requirements, the team would also have to complete every sprint requirements
and abucket requirement.

Threat modelling can be considered as a cornerstone for SDL. The idea is to create a baseline threat
model at the beginning of the project. This is then updated every sprint with new risks found from those
parts of the product which are under development. The threat model is a critical part of SDL, because
it helps to determine potential design issues which might effect security and it helps to drive attack-
surface analysis and fuzz testing. 2

Every sprint requirements

Some SDL requirements are considered so important, that no software should be shipped out without
them being completed. No matter how long sprint is, all every sprint requirements must be met before
releasing the product. This means all external audiences, so whether the programis a box product re-
lease, web release or an alpharelease, it cannot be released without these requirements being met. Ex-
amples of every sprint requirements: 3

>> Threat model allnew features.

>> Run analysis tools on build.

>> Only use strong cryptology.

>> Do not use banned APIs (Application programming Interface) .

Tsee Microsoft, 2012a
% see Microsoft, 2012b
3 see Microsoft, 2012c

In the list above, all points are requirements that must be done. However there are some optional sug-
gestions as well, such as using /GS-option in compiler, which means buffer security check. The option
attempts to detect buffer overflows. *

Bucket requirements

Bucket requirements are such requirements, that they must be done several times during product life-
time. One does not need to complete all of them on every sprint. Theidea is to have three different cat-
egories of requirements, verification tasks, design review and planning. Each category includes several
different tasks.

The team would be required to complete one tasks of each bucket on every sprint. These are done in
addition to every sprintrequirements. Thereis no order in which the bucket requirements must be com-
pleted. It is up to the team to decide what tasks to do during sprint. However, no requirement can go
further than six months without being addressed. Thisis due to fact that all SDL requirements have been
shown to reduce the amount of security problems.

OWASP conference

During OWASP (Open Web Application Security Project) conference 2010, Vaha-Sipild introduced prod-
uct security risk managementin agile environment °. Scrum was used as an example of an agile method.

Scrum was devided into three different phases:

>> Requirement engineering. This means the part where user stories are broken down to features,
whichinturn are broken down to tasks.

>> Development phase. Thisis the part where Scrum team implements to chosen backlog items.
>> Integration andreleasing. In this phase the code is released to internal or external groups.

It was also noted, that the parts are not phases, but the whole thing is working like a machine, meaning
everything is done simultaneously, rather than in chronological order.

Requirement engineering

There are two different suggestions for this phase, security stories and abuse cases. Security stories
are generic user case prototypes on security aspects. An example of a security story could be: “As a
user,lwant my personalinformation be hidden by default, soit can't be misused”. These examples aren't
meant to be used directly as requirements. These scenarios are supposed to be very general, so they
can be applied to several features. Security cases are good for understanding and doing the correct
things from privacy point of view.

As product owners might not be technically capable of creating positive security requirements for ex-
isting problems we suggest using abuse cases. These are scenarios which shouldn't be allowed to occur.
Abuse cases are broken down to positive functional requirements.

Development phase

Three different ideas were suggested here. First of all, security criteria should be added to the sprint
review's DoD (definition of done). This means someone in the team needs to ask whether they're done
from asecurity point of view. The team needs to have the power to say “no". It could oftenbe, that people
responsible for getting financial gain out of the sprint might be tempted toignore security issuesin order
to getresults. The second tool which should be used every sprintis threat modelling. This was suggested
to be doneinresearch spikes. This means, that for every potentially risky task, there should be an addi-
tionaltaskin the sprint backlog to do threat analysis. Threat analysisis scheduled as a task in the backlog

4 seeMicrosoft, 2013a

5 6 see Vihi-Sipils, 2010

before the actual task whichis being modelled. It doesn't create any deliverable code.

To identify potentially risky tasks, the team should have a checklist, which mirrors typical problems in
the past or anticipated problemsin the future. The good thing about adding threat modelling as research
spikes is that it makes risk management visible, as opposed to creating invisible overhead.

Integration and release

During this phase, it is the product owner’s responsibility to accept residual risks. If the remaining risks
are too high to be accepted, the product owner needs to schedule new threat modelling for remaining.

Stockholm University research

Aresearch by Stockholm University describes an integrated model for merging risk management with
agile practises’. Both business and engineering risks were considered. The suggested risk management
framework has four different organizational layers: risk management forum & business manager, prod-
uct owner and the team. Risk management forums is an organization wide way of communicating risks.
Business manager is responsible for high level planning and managing risks at business level. The prod-
uct manager is similar to the Scrum’s product owner and the team is similar to the scrum team.

The study suggested in the integrated model, that risk identification, assessment and management
planning would be done (when applied to Scrum) by the the product owner and Scrum-team. Risk moni-
toring, sign-off (meaning accepting residual risks) and postmortem analysis would only be done by the
team.

As for risk ownership, the study suggests that the product owner is responsible for risks in the require-
ment engineering phase. The product owner can delegate risk management to other person, usually
someone inside the scrum team. During the sprint, or implementation phase as it is called in the study,
the team is responsible for identifying and managing any new risks. The study states that: “The team
leader supervises the risk management” Which is obviously a problem in Scrum, since there is no team
leader, but a self-organizing team. The role could be adopted by the Scrum-master or someone who is
interestedin being responsible for risk management in the project.

The study also emphasized the importance of proper risk communication channels. There arein total six
different channels, as presentedin Figure. 2.

According to the researchers the

o model was limited, because it didn't
e Product vision 4— provide any suggestions how to ac-
Planning tually perform risk identification and
= assessment. The model was also criti-
g l cised for compromising agility. Risk
= management forum was thought to
5 be too authoritative for agile software
g Product roadmap development, and was suggested to
2 < ' and release plan be replaced with an organization wide
S wiki-platform.
S
X .
I l Risk board
o
. There have been suggestions for ap-
“—> Implementation <+— plying practical methods for manag-
ing risks in agile environment by us-
ing something called as a risk board ™.
Figure 2: Six risk communication channels defined by Nyfjord Risk boardis simply a whiteboard with
and Kajko-Mattsson.° categories for different risk types:
7,8

O see Nyfjord & Kajko-Mattsson, 2008

new risks, mitigated, avoided and transferred. Each risk is written on a coloured paper. The colour has a
meaning, it represents the size of therisk, red being the highest risk, followed by yellow and finally green.

Figure. 3 is an example of a risk board suggested by Wijewardena. The same board is used to manage
all risks which arise during software development, not just security risks. Risks would be written on
a sticky note and attached to the board. WIP stands for work in progress. According to Claude ™ risk
management is qualitative in agile development. Risk areidentified during all Scrum meetings. Low-tech
methods are used whenidentifying and assessing the risks, such as brainstorming and checklists. Risks
are formally part of the sprint planning and review. Risks are also assessed and managed in all Scrum
meetings. Monitoring is done by using the risk board. Using these methods risk management becomes
collective and highly visible.

New risks WIP Ignored Mitigated

Figure 3:Risk board as suggested by Wijewardena, 2009, WIP = Work in progress .

Challenges and limitations of agile security

Agile development is based on short iteration cycles and providing constant flow of program code to
the product owner. Traditional risk management is a slow and comprehensive process. Agile processes
aren't meant to create heavy documentation, which is usually what risk management produces. When
creating a new model to merge agile and risk management worlds, it is important to stay loyal to agile
manifesto and lean principles.

The following results are based oninterviews of two companies using agile software development pro-
cess. Companies were questioned about their risk management in agile software development. Inter-
view brought up shortcomings and slight problems in both cases. The biggest problems when conduct-
ing risk management in agile project environment were the following:

>> Resources are a problem. Since the goalis to create a working increment each sprint, it might be
hard to find time and people to conduct risk management each sprint. The general consensus was,
that risk management takes five percent or less of the total time available each sprint.

>> Thereisno clear risk owner, which can definitely pose a problem.

>> Acceptance of residual risks. Who has the power to accept residual risk at different abstraction
levels?

>> There was very little security training. Technical understanding of some managers might be lower
than Scrum teams'.

>> Risk communicationis a problem. Whenis arisk high enough to be reported for a product owner
for approval?

0 see Claude, 2009 and Wijewardena, 2009
Msee Claude, 2009
2 see Wijewardena, 2009

>> |fariskis not directly related to a backlog item, it might go completely ignored.
>> Sprint's DoD lackes security aspect.

Theinterviews showed that risk management is considered as an important part of agile software de-
velopment. Another thing is maturity of the software. There is less time used on risk management as
the software develops further. Thisis natural part of software development. Risks identified early in the
process willnot cause as much financialloss as the ones found later on. What this basically means is that
a good model for integrating risk management to agile needs to address thisissue.

A suggested model for agile security

This chapter defines amodel for managing risks in agile environment using theories introduced All major
risk management phases, from planning risk management to monitoring and re-evaluating risks, are
included in the model. The model revolves around a risk board, which is used and updated constantly
throughout the software development cycle. The model defined in this chapter has not been tried in any
real-life software development scenario. Despite the fact that Scrum terms are used and the model is
initially thought to be part of Scrum, there is no reason why it couldn't be applied to other agile frame-
works.

The focus is on security risks, however there is no reason why this method couldn't be used to identify
other risks as well. It is also good to remember that security and risk management are much more than
abacklogitem. Just following good principles doesn't guarantee good results.

Risk board

The board used to display risks is a modified version of the board suggested in subchapter 3.4. The dif-
ference is that the board is in a form of a risk matrix. The matrix form of risk board allows the team and
product owner to get a good idea about the general risk level in the project. The board below is a 3x3
risk matrix, however, there is no reason why a larger matrix couldn't be used. The board itself is usually
a whiteboard.

The size of therisk is calculated by multiplying impact and probability. The problem with the board might
be the estimation of probability. In some scenarios the probability might be hard to assess. If the team
feels thisis a constant occurrence, they could start using simpler board, with just low, medium and high
risks. If arisk is completely avoided or transferred to someone else, the sticky notes should be placed
away from the matrix to a dedicated area below. The tem-

plate for risk notes is defined in Figure 5. The risk notes g e
should have at least the following information: feature ID table 1 2 a
to which the risk is related, who is responsible for imple-
menting the feature and a short description of the risk.

Probability
1
There arein total two colours of sticky notes, red and yel-

low. Obviously any other colours could be used. In this case
the red notes are risks and yellow ones response solu- 2
tions. When there is a large cross over the yellow note, it

means that the solution has already been implemented.
TheFigure. 6 defines the template for solution notes. When
a solution is suggested, it is written on a yellow note and
attached to the risk it relates to. Information on the note

should include at least the suggestion and maybe a rough Avoided:

cost estimateinimplementation time or in other resource.
Transferred:

The one on the left is an unattended solution and the one

ontherightis animplemented solution. Figure 4: 3x3risk board

When a solution is crossed out, the red risk note

ID:13 John Doe should also be moved to a new position on the
board. This is done to avoid confusion regarding

Default privacy settings are current risks and to prevent one risk being moved
twice, which might drastically affeclt the acguracy

of theprocess. The strength of therisk boardis that
it makes risk management highly visible and hope-
fully easy to understand.

Checklists

To help in identification of high-risk components,
checklists could be used. In this suggestion there
are two checklists. One is based on the past expe-
rience and high-risk components. This list is more
technical by nature. The other is based on security
and abuse cases as Vdha-Sipild suggests °, and
it is used as a reference card for general security
requirements. One checklist should be based on
past experience or already existing listing of a high
risk code. It is not always easy to tell what feature
is a high-risk one, thus all features should receive
a quick risk identification. It could be in the form of
a brainstorm or some other quick and light-weight
method. The checklist that includes high-risk com-
ponents should be updated from time time. Secu-
rity and abuse cases could be another checklist,
\/ \/ which sets the general requirements for feature

security. As Vdhd-Sipild suggests, the security and
abuse cases are a great way to approach secu-
rity from an outer perspective. Security cases ap-
proach the security from a users' perspective, soit
isimportant to have a clear vision about the users' security needs. The baseline for security is set during
planning phase. Theidea s that the security and abuse cases are not booked as backlog items. They are
used as a general reference that is compared to every feature. The person responsible for implementa-
tion of the feature should ask:

Figure 5: Risk note template

Write a potential
solution to
reduce risk here

Figure 6: Risk response notes.

>> What needs to be donein order to meet client's security requirements?
>> Doesthefeature meet the requirements at the end of the sprint?

The latter could be part of the sprint DoD. In order to use security and abuse cases effectively, the team

must have understanding of the security requirements and potential attackers. This allows them to di-
rect risk identification to correct software components.

Process

PMBOK defines six different phases in risk management ™. The flowchart in Figure 7 presents the idea
how risks are identified, assessed and approved in the model.

B see Project Management Institute, 2008

Update board Update board Update board

[R I I

Book risk
High risk . 09 ”s. Create Apply Create required
identification |—>| — .
feature ? and analysis responses responses documentation

No

Update board

I]

Lightweight
methods like
brainstorming

Figure 7: Flowchart of the process

The flowchart does not includerisk planning, whichis only done once as a part of project visioning. It also
doesn't include risk monitoring. The table 1describes what additional things are done during the Scrum
meetings. This does not mean that risk identification, assessment and responses would only be done
during these meetings, most of the work will be done between the meetings. “every time" means that
the activity should be done every time, while “possible” means the activity is possible if needed.

Risk man- | Identification | Assessment Create|lA p p | y|Riskapproval
agement in response response

meetings

S prin t]everytime every time every time

planning

Daily Scrum possible possible possible

Sprintreview | possible possible possible every time
Sprint retro-

spective

Table 2: Additional risk management activities in meetings.

Risks can and should be identified during all meetings apart from retrospective. As a risk is identified,
one might also suggest the impact and probability it might have on the software. If a quick assessment
is not done, then therisk will be attached to the side of therisk board, not inside the risk board. The rea-
sonis to avoid confusion. Evenif a feature receives a quick risk identification during sprint planning, this
still means that further identification and assessment should be done by the personresponsible for the
feature. Identifying and assessing new risks during the sprint review is possible, but applying any re-
sponses willbe atask for the next sprint. Applying the chosenresponsesis done between the meetings.
The sprint retrospective is a meeting where the team will talk about what went well and what can be
improvedin the risk management process, rather than the actualrisks. It is possible to identify problems
orrisksinprocessitself, but actual product security should not be a topichere. Theretrospectiveis used
toimprove the process itself, not to talk about actual security issues.

Planning

Thisis only done once during the project lifetime. While it is not possible at this point to tackle the actual
security issues in the software, this is still an important part of risk management. The planning is done
when establishing a vision about what the software should be like. From security and risk management
perspectiveitisimportant to set requirements and goals for security. Security training is an important
part of creating secure software. Security training and methods should also be discussed before start-
ing to develop the actual software. Everyone involved with the software should receive security train-

13 see Claude, 2009 and Wijewardena, 2009

ing, including everyone in the team, product owner and scrum master. How the actual training is done
is out of the scope for this thesis. The people responsible for accepting high-level risks should receive
an adequate amount of security training in order to make proper decisions. General level of required
security should be decided here. Based on who will use the software and what is it used for, one should
get a good idea of the general level of security requirements. If the software truly requires high level
of security, then attacker profiles could be created. Attacker profile includes attackers' motivation and
resources. For example, an insider would have physical access to hardware and an existing user name
and password. Someone working for government could have very high budget. Attackers working for
organized crime would be after financial gain and relatively well funded. These profiles need to be cre-
ated if the developers want to make the most out of abuse cases. Depending on the security require-
ments, general security level wanted and attacker profiles the teams can adjust the time used on risk
management and guide the risk identification to items that are most likely attacked. The definition of
done it should be discussed here. The questionis, when is a risk so high that it prevents the deliverables
from being shipped? This obviously depends on the security requirements of the software and will vary
from project to project.

Risk identification, assessment and response

This is maybe the most crucial part in the process. There are plenty of methods for identifying risks,
as presented in page 30. In addition there are other methods tailored specifically for identifying secu-
rity risks. All featuresin the backlog deserve at least a quick risk identification. However, more in-depth
identification and analysis should be done to those features that are considered having an elevated risk
level.Just by reading the featureitis not easy to tell whether the code s high risk. The technical checklist
should be used to identify high-risk components, which might require a comprehensive risk identifica-
tion and assessment.

Risk management should officially be part of at least sprint planning and review. New risks should be
identified when choosing the features the team will commit to. This is also great timing for brainstorm-
ing, since all the members should attend. If risk management is added to the agenda of these meetings,
then the meetings will be slightly longer. Risks can be identified during any Scrum meeting, however
daily scrum being only maximum of 15 minutes, it might end up consuming a large portion of the time.
This is, however good time to seek consultation since the whole team is gathered. Sprint retrospective
can be used to hone the process itself. Risk identification and assessment The person responsible for
implementing the feature is also responsible for making sure it receives risk identification, and if risks
are found, assessment and risk response implementation. As soon as arisk is identified, it is written on
arednote describedin Figure. 7 and placed to the risk board. The same is done with risk solutions, how-
ever, yellow note is used and it is attached to risk it potentially can solve or mitigate. When a feature is
consideras a high-risk, it means a new task is booked for the risk identification and analysis. This task is
added to the sprint backlog. This is done before starting to work on the actual feature itself. It should be
done by the same person or people who are responsible for implementing the feature. The methods for
identifying and assessing the risks can be more formal and comprehensive than brainstorming. Such
methods include for example STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, De-
nial-of-Service, Elevation of privilege), DREAD (Damage, reproducability, exploitability, Affected users,
discoverability) or Trike (see OWASP 2010). Expert consultation should also be considered, depending
on the experience and field of expertise of the people assigned responsible of the feature and nature of
the feature.

Risk response

The personresponsible for a featureis also responsible for applying necessary risk responses, meaning
he or sheis therisk owner. Thelack of clear risk ownership was considered as a problem during theinter-
views. Choosing which responses to apply is a crucial part of effective risk management. The following
should be considered when creating and applying risk responses:

>> Size of therisk.
>> Risk response should bein proportion to therisk and feature.

>> How importantis the feature therisk is related to? There might be large and problematic risks
related to a feature whichis not high priority. Creating and applying responses would take a large
amount of time to complete a feature whichis not all that important.

After a response has been applied, the note will be crossed over and the risk itself is moved to a new
spot on the board. In a case where there are several responses to arisk, it is up to the same person to
decide which ones are implemented and which ones are ignored. The best response depends on the se-
curity requirements of the software and the efficiency, resources versus mitigation, of the response. If
in doubt, the person can consult with experts, scrum master, product owner or the team.

Risk approval and monitoring

One of the problems that came up during the interviews was that it was not always clear who is respon-
sible for accepting residualrisks. Hereis one possible solution for the problem. When accepting risks two
things need to be considered, the nature and size of therisk.

At this point allrisks and applied responses should be visible on therisk board. The board tells how highis
the residual risks after the crossed over responses have been applied. Theidea is, that if residual risk<2
then the person whoimplemented a feature and managed its risks can approve the residual risk. In case
of aresidual risk the product owner must approve the risks. The product owner should should receive
explanation regarding any risks greater than 2. The reason for this is that it is the product owner's re-
sponsibility to decide whether the new increment goes out. The risks should be explained to the prod-
uct owner on feature level, meaning how the feature might malfunction and what is the chance for it
actually happening. This should address an issue which came up during the interviews; some managers
do not have the technical understand to make decision based on technical details. The risks should be
presented to and accepted by product owner during the sprint review. If the product owner feels like he
or she can't make the decision about accepting therisk, then the next approval depends on the organi-
zational structure. It could be internal or external client, business decision maker or SoS-board (Scrum
of Scrums). Problem with getting approval from them is that it is unnecessary bureaucracy, which is
something lean software development should avoid. In case security risks, the ownership should follow
the codein case security problem arises. If the residual risk can't be accepted, the feature will not go out.
When this happens it means new risk responses must be applied.

When the risk has been accepted, there is no longer any reason for it to be on the board. The ac-
cepted risks should be stored in a digital form for potential future use and re-evaluation. Ny-
flord & Kajko-Mattsson suggested a wiki platform to replace the risk management fo-
rum " It would also create new possibilities when comparing risk management efficiency and
practises between scrum teams. Every team should have their own risk register. This can be done
once per sprint, after the product owner has seen and accepted all the risks. The larger risks ac-
cepted should be re-evaluated from time to time. The re-evaluation should examine at least:

>> Totalrisk, has the probability orimpact gone up or down?
>> Arethere any new ways to mitigate or avoid the risk?

The re-evaluation should be performed on constant intervals and if possible should be done by the per-
son who owns the risk. The re-evaluation should be booked on the product backlog.

Roles and communication

Therearethree crucialrolesin thismodel. These are the product owner, team andrisk owner. Inrisk com-
munication other scrum teams and business decision makers should also be kept up-to-date. All the
roles are required to make risk management effective.

" see Nyfjord & Kajko-Mattsson, 2008

Product owner'sroleis being especially important if the team is also using SDLagile. SDL-agile require-
ments should be booked on product backlog to avoid creating invisible overhead. In this model only ad-
ditional activity booked on the sprint backlog is risk identification and assessment for high risk features.

Product owner also acts as a gatekeeper for quality. At the end of each sprint new features andrisks are
presented during the sprint review. In the end, in Scrum it is always the product owner who decides if a
feature is complete and does it meet the requirements. This means that the risks should be presented
ina way that the product owner willunderstand them. Time should also be considered when presenting
the risks to the product owner, meaning that the risk owner who is presenting the risk shouldn't go too
deep in technical details.

A scrumteamiis a self-organizing team. This means they will decide among themselves how to split the
features and tasks between team members. Person's background and field of expertise should be con-
sidered whenhanding out highrisk features andrelated risk analysis and assessment. Risk communica-
tion within the team should happen without much effort, sincerisks are discussed during sprint planning,
review and occasionally during daily scrum. Risk board s also visible to the whole team.

Risk communication between scrum teams is also important. This could be done during SoS-meeting.
The threshold for presenting a risk in the SoS-meeting should be based on other criteria than just size
of the risk. The thing that should be considered before presenting arisk in SoS is: could other teams be
suffering from the same risk? If risk root cause analysis shows that arisk is caused by bad architectural
design, then the team responsible for architecture should be informed.

The scrummaster and product owner should handle communication between the scrum team and busi-
ness decision makers. One of the key principles in Scrumis that the scrum master should handle prob-
lems and communication with people who aren't part of the team. Security risks which are often techni-
calinnature shouldn't really be part of business decision makers risk management activities, exceptina
case where alarge security risk could affect long-term business decisions.

References

Project Management Institute inc. 2008. PMBOK: A Guide to the Project Management
Body of Knowledge, fourth edition.

Microsoft. SDL-Agile requirements. 2012a. [Cited 11.13.2013]. Available at:
http://msdn.microsoft.com/en-us/library/ee790620.aspx

Microsoft. SDL-Agile tasks. 2012b. [Cited 11.12.2013]. Available at:
http://msdn.microsoft.com/en-us/library/ee790615.aspx

Microsoft. SDL-Agile every sprint requirements. 2012c. [Cited 11.12.2013]
Available at: http://msdn.microsoft.com/en-us/library/ee790610.aspx

Microsoft. /GS buffer check. 2013a. [Cited 11.12.2013]. Available at:
http://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx

Vdha-Sipild A., Product Security Risk Management in Agile Product Management.

2010. [Cited 11.12.2013]. Available at:
http://www.owasp.org/images/c/c6/0WASP_AppSec_Research_2010_Agile_Prod_Sec
_Mgmt_by_Vaha-Sipila.pdf

Nyfjord J, Kajko-Mattsson M. 2008. Outlining a Model Integrating Risk Management and
Agile Software Development. SEAA '08. 34th Euromicro Conference

Claude J. Agilerisk board, a way to manage risks in agile enviroment. 2009.

[Cited 11.12.2013]. Available at: http://www.agile-ux.com/2009/07/23/agile-risk-board/

Wijewardena T. Risk Management — where it fits in Scrum?. 2009.
[Cited 11.12.2013]. Available at:
http://projectized.blogspot.com/2010/02/risk-management-where-it-fits-in-scrum.html

Microsoft, SDL-Agile high risk code. 2013b. [Cited 11.12.2013]. Available at:
http://msdn.microsoft.com/en-us/library/ee790613.aspx

OWASP, Threat risk modelling. 2010. [Cited 11.12.2013]. Available at:
http://www.owasp.org/index.php/ Threat_Risk_Modeling#Identify_Security_Objectives[13]

Cohn M, scrum of scrums. [WWW]. [Cited 30.11.2010]. Available at:
http://www.scrumalliance.org/articles/46-advice-on-conducting-the-scrum-of-scrums-
meeting

AriPietikdinen, Ericsson
Jouko Ahola, Ericsson

a~

Executive summary

Privacy issues and personal data protection has become recently one of top concerns in Europe and
United States and interest is increasing also in Far East area. Main reasons for these are recent large
scale data leakages and significantly raised privacy awareness due to those leakages. Privacy has be-
come as abasichumanright andis recognized as anecessity by the EU (Privacy Directive) and the OECD
(Principles of Fair Information Practice). This development has initiated regulators and governments to
set new more strict privacy and data protection legislations within e.g. EU and US. Breaking those laws
and regulations, especially if those leads to personal data breaches, tends to have meaningful business
impacts in terms of financial fees, penalties and direct or indirect business losses. That is also the main
reason why enterprises should include privacy in their risk management process as integral part to
avoid any unacceptable direct risks to their business and brand.

Introduction

Target audience

Management of all size enterprises (incl. CTO, CIO, CISO, CPO)

What you learn from this chapter

>> Why privacy and personal data protection matters

>> How you canidentify if privacy and data protectionrisks are valid and requires further analysis
regarding to your business

>> What are the maininitial steps any enterprise shall take to manage privacy issues

Concepts

One most often heard questions related to privacy are: "how do you define privacy?" and "“what data
should be considered as personal data?" For the first question thereis no single widely accepted answer
butin ISACA defines it as the "Freedom from unauthorized intrusion or disclosure of information about
anindividual." To find clear answer to the second questionis even more difficult, because different coun-
tries are having different specifications, regulations and laws with even more variable interpretations.
However, European Union has ended up for the following widely used definition: “Personal information

shall mean any information that can be related to an identified or identifiable living natural person (‘data
subject’); an identifiable person is one who can be identified, directly or indirectly, in particular by refer-
ence to anidentification number or to one or more factors specific to his physical, physiological, mental,
economic, cultural or socialidentity." Itis also good to remember, that the term "“natural person” or "data
subject” can be for example an employee of an enterprise, end user of a service enterprise provides
or mobile phone subscriber, etc. Regardless of the ways personal data is collected, processed, used,
transferred and disclosed to 3rd party or the purposes behind, i.e. what are the primary and secondary
reasons to manage personal data, the ultimate target of privacy laws and data protection regulations is
to protect that data from leakage and/or misuse of it. The main benefits of successful privacy and data
protection controls for natural personis to have choice what personal datais collected, how and for what
purposesitis used and to whom that data it is disclosed.

How to identify, personal data? The good starting point here is to make inventory of all the data enter-
prise either collectitself or just store, process, use or transfer on behalf of another company, customer,
collaborator, association or end user. Here any widely accepted definition of personal datais good refer-
ence regardless of the data format or the purpose of the data existence. Typical examples of personal
data are for example: Name, Address, Phone Number, IP Address, Account information, Call history,
Trace logs, Government-issued identification numbers (e.g., Social Security Number), Billing informa-
tion, Employee Files, including evaluations and disciplinary actions, Membership in Professional or Trade
Association, or Trade Union, Financial information, such as income, credit or loan records, Medical Re-
cords, Criminal records, Racial/Ethnic Origin, Sexual Preferences, Religious or Philosophical Beliefs or
Affiliations, Political Opinions, Photographs. In some (or many?) cases one data record does not alone
identify anindividual because they are attributes shared by many people. However, they are potentially
personalinformation, as they may be combined with other personalinformation to identify anindividual.
Examples of this are name and address.

Analysis of personal and related requirements

After any personal data has been identified then further analysis is needed. The main purpose of this
basic analysis to find out e.g. who owns the data, what is purpose and legal base of storing, process-
ing, using, deleting or transferring those data records? This initial analysis would already clarify if your
role here for the datais either ""Data Controller” or "Data Processor". The Data Controller owns the data
andis ultimately responsible to manage datain adequate way. The "Data Processor' processes personal
data on behalf of Data Controller. Data Processor has also many responsibilities, but not at same extent
as Data Controller is. This ‘role identification” is important in order to understand legal requirements,
etc. Most organizations are lacking the needed knowledge and competencies to make complete pri-
vacy/data protection analysis in comprehensive way. This is because there is need to go much deeperin
analysis to find out for example:

>> How sensitive personal datais from privacy point of view — not only security

>> |sthere needto comply with any specific standards and regulations like PCIDSS (credit card data),
SOX (Finance), HIPAA (Health care) or Telecom

>> |sthe dataused for any secondary purposes like direct marketing, service development, etc.

>> How long datais needed toretain

>> |sthe datatransferredto other countries andif so, between what countries

>> What are the actual data flows and where data s processed to recognize which local (like Canada,
India, Germany, etc.) or continent (EU, US) specific laws and regulations are valid to comply with,

This task requires good subject area specific knowledge and should in most cases be given to privacy
experts. There are various methodologies for this kind of analysis like formal Privacy Impact Analysis,
Data Protection Audits or Compliance Assessments or more unstructured way to find out the needed
details. Formal assessments and audits can be done either, as outsourced activity by 3rd party compa-
ny, or as aninternal self-assessment using publicly available check lists, if there are competent resourc-
es available within organization. The main output of such assessment or analysis is to identify possible
business impacts and total risk to enterprise in same way as used to do in Security Risk Analysis. Each
identified risks needs then to be mitigated to acceptable level. In many cases risk mitigation can be done

by low cost solutionlike to stop collecting that part of information which enablesidentification of natural
person or by anonymizing the data. However, in many other cases the solution may be very costly, like
needing to implement privacy controls in all key applications, moving data center to other geographical
location or establishing the needed legal frame works like “Safe Harbor" or "“Binding Corporate Rules' to
comply with mandatory regulation.

How to avoid unacceptable risks and how to achieve
needed privacy maturity level

Activities mentionedin previous sections, like Privacy Impact Assessment or other analysis, are by na-
ture more reactive than proactive and may cause extensive extra costs to organization. In too many
cases Privacy Impact Assessments or Data Protection Audits takes place only after severe privacy in-
cident has already taken place causing personal data breach with many direct and indirect damages to
enterprise business and brand reputation. Privacy incidents, if they become publicly visible, including
severe data breaches, oftenincludes also regulator fees or other sanctions after legal process. Therec-
ommended proactive approach is “Privacy by Design', which means taking privacy business impacts
into account at the very beginning of service, product or business case creation. This approach leans on
same key corner stones as proactive implementation of Information Security Management Systems
(ISMS/1S027001); people, processes and technology. People mean here clear privacy roles and respon-
sibilities and systematic training programs. Or like in case of new products or services creation we have
been using proactive “Security by Design" approach rather than correcting security weaknesses only
as reactive activity after security incidents. Naturally this highly recommended proactive "Privacy by
Design" approach, requires systematic work, whichis usually done by initiating proper Privacy Program,
which has to be managed by fully competent person. As an output of this Privacy Program, there willbe
many separate activities to establish all needed key elements like:

>> Privacy strategy

>> Structured Privacy Team

>> Privacy policies and processes

>> Metrics to measure privacy performance
>> Privacy audits / assessments

>> Datalife cycle management

>> Compliance management

>> Incident response capability

Experiences and discussion

For writing this article | have used my practical experiences from implementing Privacy Management
structures, building security/privacy teams, establishing Privacy by Design processes and initiating/
delivering Privacy Impact Assessments in large Telecom Vendor Organizations like Nokia and Ericsson).

References

Finland

Tietosuojalaki: http://www.finlex.fi/fi/laki/ajantasa/1999/19990523

Sdhkdisen viestinndn tietosuojalaki: http://www.finlex.fi/fi/laki/ajantasa/2004/200405167?search%
5Btype%5D=pika&search%5Bpika%5D=5%C3%A4hk%C3%B6isen%20viestinn%C3%A4n%20tieto-
suojalaki

EU/ECC

Directive 95/46/EC on the protection of individuals with regard to the processing of personal data and
onthe free movement of such data (General Data Protection Directive).

Directive 2002/58/EC concerning the processing of personal datain the electronic communications
sector (ePrivacy Directive) as amended by Directive 2009/136/EC

Directive 2006/24/EC on theretention of communications data by network and service providers
(DataRetention Directive).

us
Sector-related privacy laws e.g. Children’s Online Portal Protection Act (COPPA), Health Insurance
Portability and Accountability Act (HIPAA)

IAPP Publications

Foundations of Information Privacy and Data Protection: A Survey of Global Concepts, Laws and
Practices, 2012 European Privacy;Law and Practice for Data Protection Professionals, 2012 Privacy
Program Management; Tools for Managing Privacy Within Your Organization

Standards

ISO/IEC 2nd WD 27018; Information technology — Security techniques - Code of practice for data pro-
tection controls for public cloud computing services

NIST Special Publication 800-53, Revision 4 Security and Privacy Controls for Federal Information
Systems and Organizations

Security M

Reijo Savola (VTT Technical Research Centre of
Finland)

Christian Friihwirth (Aalto University)

Ari Pietikdinen (Ericsson Finland)

Timo Nyberg (Aalto University)

Executive summary

Measurement practices are a key success factor for future, systematic software development ap-
proaches. In order to be successful, such systematic approaches require sufficient and meaningful se-
curity, trust, and privacy metrics or measurements that enable developers, managers and users to ob-
tain credible evidence of the security level or performance of the system.

This section provides practitioners:

1.) a simple metrics development approach and
2.) amethod for aligning security metrics with security objectives

Target audience: SME management, Risk managers

Introduction

As software-intensive systems continue to get more connected, distributed and begin to enter ‘the
cloud' they increasingly face the ubiquitous threats associated with security breaches. Facing these
threats with today's ‘add-on’ and ‘patch-work' approaches to software security is both inefficient and
costly for software vendors and customers alike. Hence, there is a combined need that drives the indus-
try towards more systematic solutions to security issues in software engineering and software inten-
sive systems. There are numerous challenges to overcome onthe way: Architects who seek tointegrate
Security in Software Engineering and design processes recognize that security is a cross-cutting field
and thus difficult to manage consistently and systematically throughout an entire software system's
lifecycle. At the same time, the dynamic nature of security risks also brings up the need to be able to
systematically a) measure and b) reason about security solutions separately.

“So what makes a good security metric?”

In a practitioner setting, desirable characteristics of security metrics are:

N

consistency of measurement
inexpensive to gather
expression as a cardinal number or percentage an

1.
2.
3.
4.) using at least one unit of measure.

N

In addition to the above, a good metric further needs to be "“contextually specific”,and “relevant enough
to decision makers so they can take action” . Hence, we argue that

1.) in order to be relevant to decision makers, metrics need to be linked to the organization's security
objectives and

2.)inorder to be able to take action, the metrics need to bein line with (i.e. executable by) the company’s
security capabilities.

Metrics Concepts overview

The terms security performance and level are commonly used in practice to refer to the security effec-
tiveness of security solutions, the main objective of security work and solutions. In addition, security
efficiency is essential because resources are often constrained. In order to be able to reason systemati-
cally about security effectiveness and efficiency, and their ratio, thereis aneed for an abstraction model
to explicitly express what kind of solutions are designed and used. The concept of security controls can
be used for this purpose. In addition to security effectiveness and efficiency, security correctnessis a
fundamental objective 2. Correctness is a necessary but not sufficient requirement for effectiveness: it
enables effectiveness. It should be a side effect of good security, notits driver. There are various factors
which enable security effectiveness of the Sul: configuration correctness, correct design, implementa-
tion and deployment of security controls and proper security assurance and testing activities.

Theterm security metricsis misleading, since complexity, limited observability, alack of common defini-
tions and the difficulty of predicting security risks make it impossible to measure security as a universal
property. However, measured data does not need to be perfect, provided that it contains the informa-
tion required, is adequately correct and practically measurable. In context, we employ the most widely
used term, security metrics.

As security metrics are challenging to develop, it isimportant to associate security metrics with metric
confidence, an assessed value depicting the metrics developer's confidence in it. The actual measure-
ment results and the metric confidence together indicate security confidence 3, i.e. the belief that the
SOs aremet.

Concept Explanation Reference

Security Objective (SO) High-level statements of intent to counter | [ISO/IEC 15408]
identified threats and/or satisfy identified
security policies and/or assumptions.

Security Requirement (SR) Requirement, stated in a standardized lan-
guage, that is meant to contribute to achiev-
ing the SOs. [ISO/IEC 15408]

Security Control (SC) Means of managing risk, which can be admin- | [ISO/IEC 27000]
istrative, technical, management, or legal in
nature.

Security correctness Assurance that security controls have been [Savola2009]
correctly implemented in the Sul, and the
system, its components, interfaces, and the
processed data meet the security require-
ments.

Security effectiveness Assurance that the stated SOs are met in the | [Savola 2009], [IT-
Sul and the expectations for resiliency in the | SEC 1991]

use environment are satisfiedin the presence
of actual security risks.

Security efficiency Assurance that the adequate security quality | [Savola 2009], [IT-
has been achieved in the Sul, meeting the re- | SEC 1991]
source, time and cost constraints.

Table 1: Key concepts of the study

TSee Jaquith, 2007

2
See Savola, 2009
3 SeeKanter, 2004

An iterative process to develop security metrics

Asimple, yet effective process for security metrics development is the used of iterative stages that de-
compose the security objectives, originally described by 4 Figure Tillustrates the processin anindustry
setting.

Description: 2

1
? Risk Analysis

|
@ Apply suitable
metrics taxonomies
and/or ontologies

G !

Define and prioritize
security requirements

A 4

G\ Y 5 Define

- Identify Basic mea:'l:rectn:lem
Measurable architecture
components 'y

6a 6b l
?ntegrate metrics O Select Basic

from other sources Measurable Components

v

@ Develop balanced
and detailed collection

Feasibility
analysis

of metrics
Balanced and detailed Associated measurement
collection of metrics architecture

Figure 1: A simplified security metrics development approach based on [Savola and Abie 2010]
Using aniterative process for metrics development enables stakeholders to produce

1.) abalanced and detailed collection of security metrics, and
2.) associated measurement architecture.

Inthe following, the stages arereferred by SMDn, where nis the stage identifier. Fig. 2 illustrates a highly
simplified example of decomposition of the main objectives related to the effectiveness of authentica-
tion functionality.

Description: 3

Authentication

/\

Identity Mechanism

Effectiveness Integrity Reliability Integrity

O

Uniqueness Structure

Figure 2: An example authentication effectiveness de-
composition based on [Wang and Wulf 1999]

4See Wang and Wulf 1997

Basic Measurable Components (BMCs) are leaf components of a decomposition that clearly manifests a
measurable property of the system 5. The BMCs of Fig. 4 are: Authentication Identity Uniqueness (AIU),
Authentication Identity Structure (AIS), Authentication Identity Integrity (All), Authentication Mecha-
nism Reliability (AMR) and Authentication Mechanism Integrity (AMI) ©,

In practical systems, authentication objective decomposition may easily consist of tens or hundreds of
sub-nodes, because security configuration correctness and security testing metricsin particularincor-
porate alot of details in various infrastructure objects and security protocols.

A workshop method to aligh metrics with
measurement objectives

Organizations that approach information security management from a business perspective, invest in
using security metrics to measure the degree to which their security objectives are being met.

The decision however, on which particular security metrics to use, is surprisingly often based on an un-
informed process and disregards the company's security goals and capabilities. Existing frameworks
such as the SSE-CMM or ISO 27000 series provide generic guidance on choosing security objectives
and metrics, but lack a method to guide companies in choosing the security metrics that best fit their
unique security objectives and capabilities.

The method presented in this section can act as a tool to determine which metric is 1) efficient to ap-
ply using a companies given capabilities and 2.) provides the maximum contribution to the company’s
security objectives. The method is supported by existing research in the field of value-based software
engineering and has been developed based on the established “Quality Function Deployment” (QFD)
approach.

Security objectives and security capabilities

Existing information security frameworks, such as the ISO 27000 series, provide companies with ex-
cellent support in defining their security objectives. Traditional security objectives typically include the
assurance of confidentiality, integrity and availability of an organization's information assetsin a value-
neutral form?”. This section focuses on business-driven security objectives because they enhance tra-
ditional objectives with the concept of value. The following example illustrates the difference between
value neutral and business driven objectives:

A value neutral security objective: “Protect the integrity of the data warehouse.”

A business-driven security objective: "Use 60% of security resources for protecting the integrity of the
data-warehouse (and 20% for confidentiality and 20% for availability™”).

If the introduction of a security metric should not be a waste of money, the metric needs to contribute
in some form to the company's security objectives. A metric can contribute to a security objective by
strengthening capabilities that are employed by the company to achieve the objective. For example: A
metric that measures the number, type or source of malformed data packages received at a network
node over time willimprove the company'’s capability to conduct security awareness trainings (by bet-
ter targeting the training lessons towards real world threats). In return, improved security awareness
training is likely to reduce the number of security incidents that need to be fixed by the resident IT de-
partment, thus contributing to the objective of lowering incident management costs.

The extent to which a metric can contribute to an objective is determined by the ‘fit' of the metric with
the objective and by how ‘well" it can be applied.

The ability to apply a security metric is determined by the company's individual capabilities. The ‘how

5.6 5ee Savolaand Abie, 2010
7 See Neubaner, 2005

well'is measured by the range of results that can be expected from the application. Thisis in line with a
similar description of “process capabilities” by Paulk in the Capability Maturity Model (CMM) &
Consequently, we argue that a company's security capabilities represent the connection, or alignment
mediator between security metrics and objectives. Thus, in order to determine the most suitable metric
from a set of candidates they need to be evaluatedin thelight of these given capabilities.

Figure 3 summarizes this concept and illustrates the differentiation between well-aligned and mis-
aligned security metrics with the example of three different metric candidates.

Sec. Objective
Ter. Objective

‘ Gapablllty A ’ Metric candidate 1
Capability B - Metric candidate 2
.-1 Capability C Metric candidate 3

e e T
contribute to improve

Figure 3. Relation between security objectives, capabilities and metrics;
Differentiating well-aligned from misaligned metrics

Metric candidate 1in Figure 1is enabled by capability B and contributes to the primary security objec-
tives through improving capability A. Thus we consider metric candidate 1to be well aligned.

Metric candidate 2 on the other hand is less well misaligned: Even though it is expected to strengthen
capability B, which contributes to two objectives, the metric candidate’s application requires the, cur-
rently unavailable, capability D.

Metric candidate 3 also requires the same unavailable capability D and only improves capability C, which
does not contribute to the top security objectives. Thus we consider candidate 3 to be misaligned.

If acompany had to decide which of the above 3 security metric candidates tointroduce or spend money
on, they would probably be quick to rule out candidate 3, but remain less clear on the choice between
metric candidate 1and 2.

How can we support this type of differentiation in a structured process and make it available in a form
that supports a company’s metric decision?

Structured alighment process and Quality function deployment (QFD)

Alignment processes for the purpose of connecting capabilities with business objectives have been
discussed in the literature on software process improvement and value based software engineering.
0Oza et al ® developed a suitable solution using the Quality Function Deployment (QFD) approach. QFD
structureslinks between information by creating alignment matrices, called ‘Houses of quality’ (HoQ) ™.
QFD has been used successfully t in production planning by the Toyota auto company "and authors like
Richardson et al [16], Liu et al ? and Oza demonstrated that it can be adapted for new domains like soft-
ware engineering. In the security context Kongsuwan * and Mead ™ recently analyzed its applicationin
optimizing the quality level of information security and security requirements elicitation.

8 See Paulk, 1995

: &

Security Capabilities Security Metric Candidates
SSE-CMM ; Gompany specific 4
defautts capahilties
Cap1 Cap2 Cap.. Capn Metric 1 ‘ Metric 2 |
30+ 25+ 25% 20w
1 2 =
< COBIT
daf:ults o
@ Company ﬁ) x ,g :
2w B E- s 58
] securly = g © =] g.; b
L obsctives Il = 8 z=
©
g Obj. 1 dl:h-—)'*-—>.—>. E} E o §§ ‘3_.5—1-*—).—:».
; . g 28 84
5 Obj.2 35 Contribution of | & E Cu Degree to which metric's
o _ 15 f:apabm!y_ to mgenpg the o g = application requires capability
0 Obj... 15 security objective h o3 3
Obi.n 10w (5) ﬁg‘z' (8)

®©

L 18% 8,75% 1,875% 36% S5dw . 10
@ medium calculated impact calculated impact
 high 7

Figure 4: Alignment Method overview. From left to right: Matrix1:
Security objectives against capabilities; Matrix2: Security capabilities against metric candidates

We chose to use QFD as basis for the alignment process because of these authors’ experiences, its ease
of use and proven track recordin the industry.

Method Description

In this section we introduce the proposed alignment method and illustrate its usage. The goal of the
methodis to construct two alignment matrices, where the first matrix aligns security objectives against
security capabilities, and the second matrix security capabilities against security metrics. Figure 4
shows a schema of the first matrix on the left side and the second matrix on the right.

The methodis executedin 10 consecutive steps, which are divided into 3 phases: 1.) Preparation, 2.) Per-
forming the Alignment and 3.) Analysis. The circled numbers in Figure 2 mark the elements of the align-
ment matrices that are created during the 10 steps.

The method is ideally executed in @ workshop-type setting, where the main stakeholders of the com-
pany's security projects are present. The participation of these stakeholders ensures maximum lever-
age of domain specific knowledge during the alignment process. The following describes the process of
constructing and filling the matrices.

Preparation Phase

The purpose of the preparation phaseis to elicit and weight the three input-components of the method:
security objectives, security capabilities and metric candidates.

Step 1: Elicit Security objectives

The participating stakeholders (or more generally, the user of the method) are presented with a default
list of security objectives and asked to expand the list by brainstorming objectives that are specific to
their company's context. Most companies will have several security objectives in common (e.g. “pro-
tect the customer data from unauthorized access"), thus using a pre-selected list of default objectives
reduces the workload on the workshop participants and frees resources to focus on security objec-
tives that are specific to the company (e.g. "minimize the amount of unencrypted communication be-
tween on- and off-site staff"). The “Control Objectives for Information and related Technology" (COBIT)
framework [Cobit] is used as basis to create thelist of default objectives.

Step 2: Weight Security objectives
The combined list of objectives (defaults + context specific security objectives) then undergoes a two-

910 5ee 0za, 2008
M See Hauser, 1996
2SeeLiu, 2005

3 See Kongsuwan, 2008
% See Mead, 2006

staged reduction process, which consists of a voting and weighting procedure based in parts on Boe-
hm's collaborative requirements negotiation approach ™.

First, each participant is given a fixed number of votes and casts them on the security objectives he or
she perceives as most important. The list of objectives is reduced to the top 10 objectives and the rest
is discarded.

Inthe second stage, each participant is asked to distribute a total of 100 points among the remaining ob-
jectives, withthe moreimportant onesreceiving more points. The standard deviation of points assigned
toasingle objective by different participantsis used as indicator for the degree of consensus among the
participants about this objective's relative importance. The workshop moderator uses this information
toidentify and resolve disagreement about the importance of individual security objectives.

The resulting list of weighted security objectives is placed on the Y-axis of the first matrix, as depicted
on theleft part of Figure 3.

Optional: Benchmark security objectives:

Stakeholders may rate their company’s planned and current performancein fulfilling each of the select-
ed security objectives (target/actual comparison). The rating uses a scale from 0 to 5, similar to CMMI
levels, where O refers to not meeting the objective at all and 5 to meeting it to the fullest extent. The
benchmark is based on QFD’s planning matrix and not part of the alighment process or matrix outputin
our method, thus considered optional. It can be useful however to visualize which objectives require the
most improvement efforts and which may remain unchanged.

Step 3: Elicit security capabilities

The elicitation of security capabilities follows the same process as the security objectivesin Step 1. The
users are presented with a default list of capabilities generated from the Systems Security Engineer-
ing Capability Maturity Model (SSE-CMM) framework ' and asked to expand it with company specific
capabilities. After expansion, the list undergoes the same voting and weighting procedure asin Step 2.

Step 4: Weight security capabilities

The remaining capabilities are weighted using the same 100-point system described in Step 2, with
stronger capabilities (i.e. the expected results from using these capabilities are above average expec-
tations) receiving more points than weaker ones. The resulting list of weighted security capabilities is
then placed on the X-axis of Matrix 1, and the Y-axis of Matrix 2.

Step 5: Elicit Security metrics candidates

The set of security metric candidates that are considered by the company are placed on the X-axis of
Matrix 2. The composition of a candidate set can either be determined on a case-by-case basis or drawn
from examplesin theliterature, like ™.

Perform the alighment

Steps 1to 5 completed the frames of the two matrices (see Figure 4): Matrix 1with security objectives
as rows and capabilities as columns; Matrix 2 with the same security capabilities as rows and metric
candidates as columns. The cellsinthe matrices willnow be filled with "Low", "Medium", "High" or “None"
alignment symbols (depicted in the legend of Figure 4).

Step 6: Align security objectives with capabilities

Each cellinmatrix 1is filled with one alignment symbol ‘impact' that refers to theimpact of a security ca-
pability on the company'’s ability (columns) to meet a particular security objective (rows). For example:
how much does the capability to "Log data-access policy violations on firewalls” contribute to fulfilling
the objective of "ensuring customer data base integrity”. The process of filling the matrix with impact
symbols follows the previous weighting of the security objectives and capabilities, with the more im-
portant objectives and capabilities tackled first. The filling process is performed by the method users
(e.g. the workshop participants).

15 See Boehm, 2001

"6 Moreinformation on the Systems Security Engineering — Capability
Maturity Model (SSE-CMM) is available online at http://www.sse-cmm.org

Step 7: Calculate capability rating
After the 1st matrix is completed, the cumulative impact on security objectives is calculated for each
capability:

For each Capability(ii){

Capability(ii).impactSum += (Objective(i).weight x
Capability(ii).impact(i) % Capability(ii)-strength)
}

The value of Objective(i).weight and Capability(ii).strength are percentages and were determined in the
weighting processes of Step 2 and 4. The value of Capability(ii).impact(i) is determined by factors as-
signed to each of the three alighment symbols (e.g. 4 for "High", 2 for “Medium", 1for “Low" and O for
"None"). The value of the individual factors depends on the company and their specific environment,
thus experts of the local domain should be used to set them.

Step 8: Align security capabilities with metrics

The previously identified security capabilities are arranged against the metric candidates. The calcu-
lated cumulative capability impact ‘impactSum' from Matrix 1is used as capability weight on the Y-axis
of Matrix 2. The alignment is performed similar to Matrix 1, by filling the matrix cells with Low, Medium,
High or None alignment symbols. In Matrix 2 however, each cell is filled with two, alighnment symbols to
reflect the two-way relationship between capabilities and metrics described in Figure 3. The first sym-
bol ‘capRequirement' refers to the degree to which the application of a security metric candidate (rows)
requires, or benefits from, a particular capability (columns). (E.g. how much does the metric “Logging
coveragein % of hosts' " require or benefit from the capability to "Log data-access policy violations on
firewalls".) The second symbol ‘capContribution’ refers to the potential contribution of a metric candi-
date on strengthening a particular capability.

Step 9: Calculate metric candidates rating
After the 2nd matrix is completed, the cumulative alignment score of the metric candidates are calcu-
lated:

For each MetricCandidate(iiil{
MetricCandidate(iii).alignmentScore += (Capability(ii).strength x
MetricCandidate(iii).capRequirement(ii)) x
(Capability(ii)-impactSumx MetricCandidate(iii).capContribution(ii))
}

The factors of for the symbols in MetricCandidate(iii).capRequirement(ii) and MetricCandidate(jii).
capContribution(ii) are determined as in Step 7.

Step 10: Analysis

The first matrix helps the company to determine which capabilities have the strongestimpact onreach-
ing the set security objectives (see Step 7 in Figure 4). The second matrix enables an evaluation of the
metric candidates' capability requirements and their expected contribution to the security objectives
(see Step 9 in Figure 4). Higher alignment scores indicate that a metric candidate is more likely to ben-
efit from existing, strong capabilities and contribute to the improvement of capabilities that support the
company in achieving their security objectives. A sorted list of metric candidates based on their scores
represents an important decision support tool on which metric(s) are the most suitable alternative(s)
forintroductionin the company. In addition to the prioritized list of metric candidates, different patterns
of symbols in both matrices allow for more complementary analysis. (e.g. determining the number of
capabilities with a high contribution to a particular security objective vs. objectives that are not sup-
ported by at least 1capability).

7 For more information see [Jaquith 2007] pp.56, table 3-3 (2)

References

Boehm, B., Grunbacher, P, Briggs, R.O. "Developing groupware for requirements negotiation: lessons
learned," Software, IEEE, vol.18, no.3, pp.46,55, May 2001.

COBIT. Information Systems Audit and Control Association, 2012. Available: http://www.isaca.org/CO-
BIT

Hauser, J.R. and Clausing, D. The house of quality. IEEE Engineering Management Review 24, 1(1996),
24-32.

Information Technology Security Evaluation Criteria (ITSEC), Version 1.2, Commission for the European
Communities, 1991,

Jaquith, A. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-Wesley Professional,
2007.

Kanter, R. M., “Confidence: Leadership and the Psychology of Turnarounds,” Random House, London,
2004.

Kongsuwan, P, Shin, S., and Choi, M. Managing Quality Level for Developing Information Security Sys-
tem Adopting QFD. Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, 2008. SNPD'08. Ninth ACIS International Conference on, (2008), 19-24.

Liu, X.F,, Sun, Y., Kane, G., Kyoya, Y., and Noguchi, K. QFD application in software process management
andimprovement based on CMM. Proceedings of the third workshop on Software quality, (2005), 6.

Mead, N.R.and INST, C.U.P.P.S.E. Experiences in Eliciting Security Requirements. (2006).

Neubauer, T, Klemen, M., and Biffl, S. Business process-based valuation of IT-security. Proceedings of
the seventh international workshop on Economics-driven software engineering research, ACM (2005),
1-5.

Oza, N, Biffl, S., Fr\uihwirth, C., Selioukova, Y., and Sarapisto, R. Reducing the Risk of Misalignment be-
tween Software Process Improvement Initiatives and Stakeholder Values. Industrial Proceedings of
EuroSPI, (2008), 6-9.

Paulk, M.C. and Paulk, M.C. The capability maturity model: Guidelines for improving the software pro-
cess. Addison-Wesley Reading, MA, 1995.

Savola, R, "A Security Metrics Taxonomization Model for Software-Intensive Systems," Journal of In-
formation Processing Systems, Vol. 5,No. 4, Dec. 2009, 197-206.

Savola, R, Abie, H., "Development of Measurable Security for a Distributed Messaging System,” Int.
Journal on Advances in Security, 2(4), 358-380.

Wang, C., Wulf, W. A,, “Towards a Framework for Security Measurement", 20th National Information
Systems Security Conference, 522-533.

Fuzzing

Juho Myllylahti,
Oulu University Secure Programming Group

Pekka Pietikdinen,
Oulu University Secure Programming Group

Executive summary

Fuzzing is an effective and practical form of fault-based testing which is especially popular in security
and robustness testing. Fuzzing tools widely used by security researches and other parties who try to
uncover vulnerabilitiesin widely used real world software. This chapter presents the generalidea, termi-
nology and tries to give insight on how to combine fuzzing and agile development practices.

Concepts

Genesis

Professor Barton Miller coined the term fuzzing, and thereis aninteresting backstory onhow he first got
interested about theideainlate 80s. In his website ', he tells how he was logged into a remote UNIX sys-
tem one night, trying to work over amodem connection whilst a thunderstorm was raging in Wisconsin.
The storm caused noise on the phone line, distorting the input he was sending to the server. During this
he noticed, that the programs he was using - common UNIX utilities - seemed to crash frequently and
he was racing time to write the commands before the storm could intervene and cause the utilities to
crash. This experience made him curious of how common of a problem was this type of program insta-
bility. The result? Very common: they could crash or hang 25-33% of the tested UNIX utilities of seven
different UNIX variants - arespectable figure considering many of those utilities were very mature and
widely used pieces of software, written by very talented developers. Barton and his colleagues later
reproduced their testsin 1995, 2000 and 2006 testing X-windows system, Windows DLLs and Mac OS
X - still finding bugs.

The generalidea

The generalidea of fuzzing can be describedin many different styles, formally and less formally. A formal
way of describing fuzzing could be that it is a search problem where we try to find faulting inputs (and
thus bugs they reproduce) from the program'’s input space using randomized search. A less formal way
could be that fuzzing is a way to subject software at the mercy of ahorde of four-year olds who relent-
lessly torture the software until it fails. A practical descriptionis that a fuzzer takesin sample files - or a
description of the format of the data - and outputs data thatis sort of correct but a bit wonky. These files
canthenbefedtothesoftware we want totest to seeif it canhandle them without crashing or behaving
oddly. This testing method is sometimes called fault injection. Since programs are seldom coded with
the “what-if" mindset, this simple (but devious) method of software testing quickly begins to unravel
those “what-ifs".

! http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html

There are many different ways to fuzz

Simplest form of fuzzing is to just create completely random data (white noise, basically) and use it as
the input of the target program. Conceptually this maps to completely random selection of different
inputs from the input space. Even though simple, even this method can (and given time, will) uncover
defects. Depending on the software we want to test, however, there might be need to concentrate on

=

#

certain parts of the input space. For example, if we were to test aHTTP server and we presume a struc-
ture where the first bytes of the request are parsed to determine which HTTP method does it map into
if no match is found, the connection is closed. In this situation the first bytes that are randomised need
toformstring "GET", "POST" or some other HTTP method in order to ""get" into the more complex parts
of the HTTP request parser. It is obvious that this seldom happens. In these situations, where the input
is structured it is sensible to make data that has bigger probability to resemble valid HTTP requests in
order to achieve better code coverage by getting bigger percentage of the test cases to get past the
initial barrier.

To get there, several different approaches have been developed. One approachis to take valid test cases
(validHT TP requests in this case) and to cause simple mutations to them. One simple approachis to walk
through the file bit by bit and flip each bit with a certain probability. More complex techniques include
mixing data from several different valid requests, copying a sequence of bytes few times, deleting rows,
swappinginteger values withrandom ones and so forth. Another approachis to create a grammar of the
data either by hand or automatically and then either create data based on the grammar or first mutate
the grammar and then create data based on the mutated grammar. Naturally it is also possible to mix
these two approaches, or to write a specialised domain-specific fuzzer with fancier features, such as
calculating checksums for the random or semi-random data and emitting them to the correct places.

What's there to like about fuzzing?

For one, fuzzing is a really, really cost-effective way of hunting bugs. One good indication of this is that
many of the professional bug hunters use fuzzing as their main tool; they would not be using fuzzers if
there was a better and more profitable way to catch bugs. Many companies have also realised this, for
example Google (fuzzing cluster consisting of thousands of machines) 2and Microsoft (fuzzing research
and requirement of fuzzing in their Security Development Lifecycle) 3 4

Fuzzingis alsoreally effortless to set up compared to many different testing methods: download a fuzz-
er, point it to some sample files and create to script to feed the generated test cases to the application
you want to test and devise a way to catch crashes (exit codes and systemlogs are some notable candi-
dates for this). Set the script running and go about your day: let the computer do the heavy lifting.

What kind of software should be fuzzed?

Naturally itis not abadideato fuzz any software, but if the software fits the bill for one or more of the

2 http://blog.chromium.org/2012/04/fuzzing-for-security.html
3 http://msdn.microsoft.com/en-us/library/cc162782.aspx

4 http://www.microsoft.com/security/sdl/default.aspx

following criterion, the fuzzing is probably a good idea:

>> software with components written on languages that use manual memory management

>> software with parsers

>> software whichis widely used

>> software which should be robust

>> software - or systems - which consists of several separate components interacting with each
other

It should be noted that many of the modern software components fulfill part of or the whole criteria,
especially if the software is part of cloud stack or integrates part of its functionality with components
running in the cloud.

Phases of fuzzing

Sutton et al. *identify following phases of fuzzing:
1. Identify target

2. Identify inputs

3. Generate fuzzed data

4. Executefuzzeddata

5. Monitor for exceptions

6. Determine exploitability

Inphase one, the testing target is examined to find out which kind of an applicationitis and to determine
which kind of fuzzing tool or technique would be best fit for it. For some applications there might exist
domain-specific fuzzers which might be worthwhile to try out. For example, if the application deals with
network protocols, there are existing fuzzing tools which are specialized in testing protocol implemen-
tations.In other cases, ageneral-purpose fuzzeris the best bet. Note thatitis always worthwhile to also
try the general-purpose fuzzer, even if domain-specific tools exist.

After the target has beenidentified, it is time to continue to the next phase to identify the input vectors
of thetarget.Inpractice thismeans that we try to find out all the different channels and formats the pro-
grams reads and uses. Although this might sound like a cakewalk; it is easy to omit some input vectors
which are hidden in plain sight: things such as the name of the executable, favicons, environment vari-
ables, file formats that are "unofficially” supported, and so forth. Another thing to note is the different
level of the “structuredness” of the data. For example, a jar-packet of Java code might contain magic bi-
nary values as a valuein XML-markup in turn embedded to java code, which livesinside the zip-encoded
archive file. It might be profitable to decide which of these levels we want and do not want to fuzz.

Oncetheinput vectors have beenidentifieditis time to begin fuzzing by generating test cases using the
fuzzer of choice. Usually the steps from 3 to 5 are scripted so that we create some amount of test cases,
feed them to the application and monitor if the application seems to hold up. If faulting test cases are
found, they are stashed along with the instrumentation data about the type of the crash. Otherwise the
created test cases are deleted and process begins again from step 3.

Once the systemis up, the tester's job is to occasionally check the cases found to determine if they in-
clude critical bugs. Otherwise the tester is free to commit to other productive tasks, as the computer is
doing the heavy lifting.

5 Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: brute force vulnerabilty dis-
covery. Addison-Wesley Professional.

Instrumentation and testing oracle

One critical piece of fuzz testing is the instrumentation of the software we are testing. The application
willbe bombarded with large amounts of test cases and thus it is necessary to automate also the iden-
tification of faulting behaviour of the software since it is not feasible to require a person to sit by the
machine and try to catch errors as they emerge. Fuzzing is very much about automating as much as
possible of the testing, since the manual phases often become performance bottlenecks - in addition of
often beingreally boring.

Creating theinstrumentation and automating the testing oracle - the part of the testing framework that
tells us if the program functioned correctly or not - is usually quite simple, especially when testing self-
written software: wire up the error output and the exit value of the software to the testing script and
based on that determineif the software functioned correctly or incorrectly. Naturally there are a wealth
of other potential sources available if needed, such as system logs, memory error detectors, triaging
tools and kernel message buffers - or just periodically checking with a valid test case that the software
is stillresponding correctly.

It is good to note that the testing oracle
needs to function well enough (=not miss
too many faults), since the effectiveness of
fuzzing is directly linked to the the effec-
tiveness of the testing oracle:if the instru-
mentation fails to catch half of the faults,
then half of the effort is wasted. Thus it is
important to inspect the instrumentation,
if the results of the fuzzing seem to be
lacking in quality or quantity. Often the
testing oracle consists of tools such as
?AddressSanitizer, which catch most test
cases which might potentially include se-
curity bugs, and test case filtering, which
tries to filter out false positives (such as
out of memory bugs) and duplicates of
bugs already found. If the filtering is not
tuned correctly, it can miss bugs or fill the
logs with duplicates and false positives.

Fuzzing, improving security and
agile software development

Fuzzing and agile software development are a young couple. As a concept, however, they do seem to
fit together: both value quick results, both thrive on continuous adaptation as the conditions change
and both strive to automate and cut away unnecessary externalities to improve the testing or devel-
opment process as far as possible. However, fuzzing is seldom mentioned when talking about testing
in agile software development. Why, one might ask? Most probable reason is that fuzzing is relatively
unknown method of software testing and is mostly known by security testers, often domain experts
who are - sadly - rarely working as a full-time part of software development or testing teams who plan
and execute the day-to-day testing and quality assurance the software receives. This does not aid in
spreading the word about fuzzing. Additionally fuzz testing might be misunderstood as a testing tech-
nique only applicable as the means of finding security-related issues, and because of that isignored by
the general software developer or tester, which is unfortunate, since fuzzing also finds general bugs.
Nowadays more and more software is or depends on web services and cloud infrastructure, so even
the common developer should not ignore testing method which is also effective in uncovering potential
security issues.

Oneinteresting issue people might have with fuzzing - or other effective forms of negative testing - is
that it might be “too good” in finding bugs: positive test bias is very much an existing phenomenon in
software testing. This also applies in agile software development: it is easier to come up with positive
user stories (“as an administrator, | can reset the user password”) than negative ones (“as auser, | can-
not crashthe systemif | type random garbage to the login field"), or positive unit tests than (good) nega-
tive ones. One might even want to eradicate most (if not all!) the negative tests and user stories if they
form part of the specification of the software, since they seem like useless and obvious cruft. However,
if theaimis to createrobust and well-behaving softwarein thelong run negative testing needs to be ad-
dressed as well - andit is best to start early to minimise the accumulation of bugs and faulty behaviour.
A word of advice though:itis best to make the features somewhat ready before beginning to fuzz them,
since it discourages the development team less and makes the filtering of false positives easier.

Sincein agile software development testing is preferably automated, if feasible, there is also the ques-
tion of integrating the fuzz testing to other testing infrastructure: fuzzing should be automatically ex-
ecuted at a suitable phase of the development and possible issues should be automatically committed
to the appropriate location, such as the project’s bug tracker. Traditionally fuzzing is isolated from other
test effort and has own testing pipeline, but thisis probably because of the usual background of persons
engaging in fuzzing - security testing. However, if we wish to integrate fuzzing, we need to come up
with solutions how to do it. At the moment, there are no a drop-in modules that could be dropped into
the Cl framework with minimal configuration and suddenly everything would be fuzzed, but this does
not seem to be the path to take due to the characteristic of fuzzing. In order for fuzzing to be useful, it
should be targeted to the parts of the program which handle unverified data, such as user input or data
pulled from the network (if all the functions of the program are fuzzed, we end up in situation where
every function needs to be written defensively, which is usually not necessary). Another reason s that
the developer usually knows best what kinds of inputs each part of the code might and should deal with
and has or can easily acquire the appropriate test cases for it (which we can use as basis for fuzzing).
Finally, the developer usually knows best how the testable parts of the software work and should work,
and how to build a working test oracle for it, as automating the creation of testing oracles is not an easy
task. Thusit seems to be the best solution to offer good general-purpose fuzzing tools and frameworks
for the developers to use to build their own fuzzing and the required handling of found test cases and to
provide the missing glue that leads to the integration of fuzzing to the rest of the project’s testing effort.
Practically: provide the testers with fuzzing tools that take in valid cases and output fuzzed ones; the
tester can then relay the fuzz cases to the software and build a testing oracle that will catch the faults
andrelay the findings to the appropriate destination, such as bug tracker.

Experiences and discussion

Fuzzing has been successfully applied while testing many different flavours of programs, uncovering a
hefty amount of bugs in production software. In the beginning it was used to test UNIX utility programs,
but since then it has been applied in testing domains such as protocol implementations, large desktop
applications (such as Microsoft Word), operating system APIs and web browsers. In general you can
presume that if the software component or application has not been fuzzed before you can be almost
sure that you will uncover bugs from it. Because of this fuzzers are very popular among people who
hunt bugs professionally or semi-professionally (e.g. browser bug hunters or people who try to find the
necessary bugs in order to jailbreak the latest gadget), since fuzzers provide good bang for their buck.
From our viewpoint it does not seem to be that the mileage of fuzzing would run out in the near future,
in general. Fuzzing does have the property that you need to be able to construct the testing oracle for
the software tested, so in principle fuzzing might become more difficult if the software and platform
vendors decide to obscure the debugging interfaces and other components used in building a testing
oracle..but that makes the testing more difficult in general and might in the long run even alienate the
users and developers depending on the software or platform.

The Radamsa tool developed by us has already been used to find over a hundred previously unknown
vulnerabilities in browsers. All these vulnerabilities have been reported to the manufacturers at once
so that they could be fixed as quickly as possible. Vulnerabilities have been found in anti-virus programs

and widely used image and audio formats as well. Radamsa is a completely automated data security
testing tool, whichis the architect of the structure and the creator of testing events. Init, the best prop-
erties of previously developed automated data security testing tools have been collated. The Radamsa
software has been developed in the course of a four-year Cloud Software programme. Business part-
nersinthe project have included Ericsson, Nokia, F-Secure, Google, the Mozilla Foundation and WebKit.
org.Radamsais developed as an open source project. Many of the tested programs, such as Firefox and
Chrome, are wholly or partly source projects and use alot of shared libraries. Due to this, vulnerabilities
that have been fixed usually help toindirectly improve data security in other projects, such as almost all
Apple devices, Android phones and smart TVs.

References

Sutton, M., Greene, A., & Amini, P. (2007) Fuzzing: brute force vulnerabilty discovery. Addison-Wesley
Professional

Takanen A., DeMott J. D., Miller C. (2008) Fuzzing for Software Security Testing and Quality Assurance,
Artech House Print on Demand, ISBN 978-1596932142, 287p.

Pietikdinen P,, Helin A., Puuperd R. et al. (2011) “Security Testing of Web Browsers” Comm. of Cloud
Software, vol. 1, no. 1, Dec. 23, ISSN 2242-5403. Available: http://www.cloudsw.org/current-is-
sue/201112226146

Helin A.(2013) Radamsa fuzzer. Available: https://code.google.com/p/ouspg/wiki/Radamsa

Sini Ruohomaa, University of Helsinki
Lea Kutvonen, University of Helsinki

Executive summary

The system security life cycle does not end at software development, and is not maintained by tech-
nological considerations only. This chapter takes a look at enhanced security during operational time
when a composition of software services run together forming a system that spans over organizational
boundaries, in a shared cloud or between clouds. The take-home message of trust management is that
the world is not divided into black and white of authorized and unauthorized users any more, but you
need to be able to deal with uncertainty and risk while collaborating with services provided by another
organization with different goals, incentives, norms, and practices. Making trust decisions in this kind of
environment under changing business situations requires some tool support: contracting, monitoring,
reputation systems and risk-aware trust decision systems.

Target audience: SME management (incl. CTO, ClO), service engineers
What youlearn from this chapter:

>> What is reputation-based trust management about,
>> What does it need around itself to be successful, and
>> What are the key points where things can go wrong.

Introduction

System security is about setting up multiple layers of defense: when one security mechanism fails, all is
not lost. For example an Internet service provider (ISP) needs to identify its customers, to whomiit pro-
vides access to the Internet. The means to sort paying customers from outsiders is a security mecha-
nism: identity management and authentication give the service provider a way to figure out who it is
dealing with. To allow users to change their service settings securely, the ISP may provide an encrypted
connection between the customer and its server, in order to stop outsiders from interfering with the
communication.

Individual security mechanisms may turn out to be insufficient when the users, outsiders and even the
service provider's staff do not follow the system designers' expectations. The user's computer may be
infected with malware, and the ISP suddenly becomes a service provider for amalicious botnet operated
from abroad. Alternatively the user may simply be a great fan of streaming video, and overload the ISP's
network. Normal people who just want to get things done may also circumvent a security mechanism
that seems to getin the way: not bother to configure appropriate logging, bypass an access control step
for example to let a friendly stranger through the door, or save credit card data or passwords unen-

crypted just until there's time to do it properly. No single mechanism can protect a system, because the
very idea of security as stopping bad things from happening means that the different possibilities for
failure areinfinite.

In collaborations between services, setting up identity management and authorizing a partner for ac-
cess to the serviceis not enough by itself. For cloud infrastructure services, Service Level Agreements
(SLAs) are commonplace to specify the duty of theinfrastructure provider to deliver uninterrupted ser-
vice under specific terms. Similarly, combining services like flight reservation, a travel agency website,
hotel booking and online payment handling require contracts to be specified both on how the service s
tobeusedandhow itistobeprovided. Legally binding contracts, together with the judicial system, form
another security mechanism which focuses on behaviour after the user has been allowed access into
the system. Together, these different mechanisms support inter-enterprise collaboration governance.

The inter-enterprise collaboration situation is illustrated in Figure 1 where entering a collaboration as a
travel agent requires the travel agency itself to trust in business terms that the bank, hotel and flight
service operators are intending and capable of providing the contracted services, and that their organi-
zationalandIT governance are solid enough to overcome any security or operational faults without let-
ting them affect their collaboration partners' needs. The end result here is the enhancement of tradi-
tional security levels to risk management and trust in business situations.

Trust is needed wherever security

Travel agent Hotel cannot provide a control against
misbehavior. For example a ho-

H tel, after having confirmed a room
booking, must also deliver the ser-

vice to the user of the joint travel
service when she shows up amonth
later; otherwise the travel agency
will have an angry customer in its
hands. The travel agency has a de-
pendency relationship to its hotel
partner; this kind of problem cannot
be protected against by standard
. . information security, because the
Onllne bank F|IghtS collaborationitself inherently caus-

es therisk situations.

Figure 1: A contract-governed collaboration consists of roles

fulfilled by services.
Inabroadsense, trust management

is a security mechanism that aims to support educated decisions about these risks. Like other security
mechanisms, it cannot solve system security by itself, but provides another layer of protection. This
layer is directed at what authorized actors do or fail to do when interacting with the protected system
under a collaboration contract (whether it is explicit or implicit). The basic idea can be generalized to
monitoring any actor behavior in a system, although with caveats. From the point of view of manage-
ment, trust management falls and to a degree bridges between purely technical security solutions, such
as channel encryption, and governance mechanisms, such as contracts.

The following sections present the concepts relevant for trust management, describe how trust man-
agement fitsinto alarger service ecosystem infrastructure, and discuss lessons learned from research
onreputation-based trust management.

Concepts

Trust decisions are made by a trustor service about a trustee service. The actors we look at through
this are policy-governed and software-supported services, i.e. software agents. We look at services
instead of the providers behind them because two different services from the same service provider

may have different decision policies, different reputation due to different behavior, or different capa-
bilities. From the point of view of automation, the service provider - whichis alegally responsible actor,
suchas anorganization or acompany - expressesits values andintentions through policy, whichis then
interpreted by software governing the services.

Trust is defined as the willingness of a trustor to enter into or continue in a collaboration with a given
trustee, considering therisks andincentivesinvolved. Analternative common definition of trustis based
on"'subjective probability” of the trustee behaving well from the point of view of the trustor. We encode
this probability in a risk evaluation, and therefore consider willingness to depend the core of the trust
concept.

Trust management is defined as the activity of collecting, maintaining and processing the information
that trust decisions are based on. While computational trust management is a security mechanism, se-
curity does not generate trust as such. It reduces risks, and thereby leaves a smaller gap between risks
andincentives for trust to fill:in other words, security reduces the need for trust. Thereis an alternative
definition of trust management as well, first used by Blaze and Feigenbaum, that refers to certificate-
based access control: i.e. whether | am willing to accept that the credentials you have provided mean
you should have access to this service. The two should not be confused; for clarity, the brand of trust
management discussed hereis also referred to as reputation-based trust management.

Trust decisions are based on balancing between the estimated risks and risk tolerance for the situation.
In the context of our work, risk is defined as the cost-benefit estimate of the action being decided on.
Risk toleranceis a specification for the risks that are clearly acceptable, not acceptable, or somewhere
inthe gray area, which means that ahuman user must make the decision. Itisinfluenced by the business
importance of the action being considered: as an example, we may not be usually willing to sell for credit,
but if we need to be freeing up space in our warehouse for a newer product, we might be more willing
accept therisk that that payment is delayed or leads to debt collection. The decision context affects the
different factors; for example having aninsurance in place for a specific contract may reduce monetary
risks for that without affecting other collaborations.

Figure 2 captures the essential trust decision information elements.

Trust decisions are first made when committing to a given collaboration contract, and after that regu-
larly during the collaboration, whenever additional resources are to be committed. The routine opera-
tional time decision may change from positive to negative if new experiences or the size of the required
commitments indicate there is no longer sufficient trust to continue collaborating with the partner. In
this case, the partner may need to be replaced if possible, or if the trustor decides to withdraw from the
collaboration altogether, it must
weigh in also possible compensa-
tionit must pay as aresult.

TRUST DECISION

—_— T YOLERANCE In both decision-making points,
trust decisions are determined by

SR, i AN private policies local to the ser-

*, 0, P vice providerlorganizaltion a.nd the

94 g g ‘»..f? 'S:‘," specific service that is acting as
’ the trustor. This kind of decision-

f making is too close to the core
AFFECTS

NFFICTS =~ ' business of an enterprise for it to
,o\"é?" ‘:ff’%‘r be directly delegated to global pol-

‘x" CONTEXT Ny icies set by other actors, and the

— basis of the decisions is sensitive
@ enough information that it cannot
ep—— RN be published lightly in the general

case either. Deviations from this
base division of concerns should

Figure 2: Trust decisions balance risk and risk tolerance. .
be made with great care.

We evaluate risks from the point of view of effects on different types of assets, which are understood
in a broad sense. For example the monetary asset type covers gains and losses that can be expressed
in terms of money, while the reputation asset covers the trustor's “good name”, positive publicity and
standinginreputation systems; thisis typically difficult to measurein terms of money, but is threatened
inthe case of the travel agency by a subcontractor hotel evenif the hotel refunded the reservation fees.
The control asset type coversimmaterial assets of physical and information security, organizational pri-
vacy and autonomy; it can be threatened by actual attacks or negligence from a partner, for example, or
in the case of autonomy, contracts that have so tight withdrawal terms that they are in practice impos-
sible to withdraw from later, no matter how much resources they tie up.

For covering the competitive benefits of maintaining a “goodreputation” and the relatedrisk evaluation,
we have also included in the risk evaluation an endangered ‘asset’ type which does not directly con-
nect to losses or gains. The satisfaction asset type refers instead to whether the collaboration fulfilled
the contract and went as expected. This is tracked because aspects such as quality of received ser-
vice, prompt responses and gaining what was expected from the collaboration may not be reflected as
directly measurable monetary, reputation or control effects, but are clearly a strong influencer in the
willingness to collaboratein the future.

Therisk evaluation then estimates how each asset type might be affected by joining or continuing in the
collaboration, for a given commitment. This is based on experiences of past collaborations, which record
the estimated effects equivalently.

Tolimit the complexity of the model from the point of view of the user, we have divided these effectsinto
discrete categories: major negative effect, minor negative effect, no effect, minor positive effect and
major positive effect, complementedby a category for ‘unknown effect’in the case of experiences, if the
effect cannot be determined. The risk evaluation considers the probability of each different outcome;
the unknown effect does not have a probability as such, but a high number of experiences recording an
unknown effect indicate that the quality of therisk analysis for this particular asset may not be very high
and should therefore be taken with a grain of salt.

Experiences of past collaborations are encoded as the trustee's reputation. It is a combination of local
experiences gathered through first-hand observations, and external, third-party experiences shared
through reputation systems. The value of third-party experiences lies in complementing local experi-
ences when a) a trustor has no or very little previous own experience about the trustee, or b) to serve
as a warning when the trustee’s behavior has suddenly changed elsewhere, particularly for the worse.
From the point of view of the entire community, reputation systems make it more difficult for an actor
to reap great benefits from misbehavior, as the first few victims can warn off others for a fraudulent
service provider. They act as a shared memory that makes it possible to learn from others' mistakes and
make the system as a whole more secure.

While reputation systems can be seen as another security mechanism, they also bring their own prob-
lems: when a good computational reputation becomes worth money due to “buying” entry into new
collaborations, there will also be an incentive to commit reputation fraud, i.e. to gain reputation with-
out deserving or to “steal” it from others. Reputation systems must therefore have additional layers of
security to defend against attacks towards themselves. When experiences are shared between differ-
ent actors, they must be evaluatedlocally for credibility before using them in decision-making, because
incoming experiences may be both too subjective to use and downright false - two competitors might
provide negative feedback on each other or undeservedly praise their affiliates, for example. This critical
input processing is directed by its own set of reputation update policies, which together with the trust
decision policies form the heart of the trust management system.

Service ecosystem engineering
for trust management

In order to talk about trust management as a part of the different layers of security and governance

mechanisms it operatesin, we willneed to take a step back and look at the service ecosystem for a bit.

The individual collaborations between services (e.g. the travel agency, flight company, payment handler
and a hotel chain) operate as a part of a service ecosystem. The service ecosystem consists of infra-
structure that enables these collaborations and which can have varying degrees of flexibility from the
point of view of individual collaborations. The elements of an ecosysteminclude’

>> infrastructure services (e.g. means of finding suitable business services for a given need or arepu-
tation system) and information repositories (e.g. available service offers),

>> shared norms and standardization (e.g. (de-facto-)standard template contracts such as are al-
ready usedin e.g. construction, or shared business process model templates),

>> the actors/stakeholders (e.g. service providers, service consumers, infrastructure providers,
domain experts) and

>> the actual business services and the collaborations formed from them.

We believe that the greatest benefits from computational trust management are realized when it is
brought together with other infrastructure. This is because automated decision making is highly de-
pendent onitsinput data and policy configuration; the cost of setting up the necessary support for trust
management is likely to be too high in relation to the marginal benefit. For this reason, we have focused
our work on studying how it works together with other infrastructure services and how it can benefit
from the sameinput data that they need.

For example contract templates, which are already in use in inter-enterprise collaborations, involve an
establishment of some best practices on agreed-upon norms. For example a union of service provid-
ers, such as in the Finnish building and renovation industry, can establish a standard contract template
where the details of the work, such as pricing and stakeholders, are filled in. This kind of standardization
saves time when setting up new contracts. Similar best practice template policy sets could be provided
for easy adjustment of service providers to simplify the configuration of trust decisions.

One coreservice that only trust managementrelies onis the reputation systemfor sharing experiences.
We have observed a need for organizations to learn about different service providers, but there s little
support for it currently: the provider can make claims onits own website about who it has worked with,
for example, but this information is set up for the purposes of marketing, and is almost certain to omit
any negative experiences. Unions of service providers with a common interest to improve the quality
of the market can define certification programs and databases of financial stability (e.g. Rakentamisen
Laatu, http://www.rala.fi/ and Tilaajavastuu, http://www.tilaajavastuu.fi/). The databases can also be
used as amore neutral location for storing references and even feedback of earlier partnerships, as Ra-
kentamisen Laatu does.

In the short term, publically shared reputation information such as the aforementioned references can
be made visible for example through web portals for domain-specific partner searches. In the long run,
we expect services to emerge that interpret the available information into more refined recommenda-
tions, and potentially support more fine-grained experience sharing.

Figure 3illustrates the connection of software development lifecycle, the composition of collaborations
at the operational time to produce more advanced services, and the connection to the ecosystem-wide
reputation information flow as an element of trust decisions. The ecosystem infrastructure keeps the
produced software-based service components, collaboration templates (such as business process
models), and availability information of the variety of services from different providers online. Each col-
laboration establishment and continuation is dependent on the organizational or company actors' trust
decisions on the specific situation, affected by on one hand their private knowledge about their business
drivers andrisks, modeled risks visible from the ecosystem knowledge, and the changing flow of repu-
tationinformation visible for all ecosystem members.

TseeKutvonen, Ruokolainen, Ruohomaa, Metso, 2008.

Experiences and discussion

The two parts that make or break a trust management system are its policies and input data. While the
trust management system prototypes that have resulted from research are not finalized products that
could be tried out in real environments, they help in gathering experiences on the general principles of
building these kinds of systems. In addition to the results reported here, research is ongoing on how
publicly available information could be automatically compiled together into a mashup for a partner
search portal?,

Policy configuration

A policy-based automated system can only make decisions and process its input based on the explicitly
configured policies. The key requirements for policies can be divided into three categories: 1) sufficient
expressiveness for the policy language, 2) ability to configure and modify the policies, and 3) acceptable
performance costs for processing them.

The internal data model of the system must be able to support expressing sensible policies. In our re-
search work, we have taken a step forward from the state of the art by separating risk from reputation
and business importance in order to make their relationships explicit. We have also advanced from cal-
culating pure probabilities for “good" or 'bad" behavior to focus on the effects that different good, bad or
gray-area actions have some kind of effect on assets the systemis set up to protect.

Most software engineers have been told how it is important to separate policy from implementation.
It must be possible to change the entire trust management system from one configuration to another
while it is operational, because a security system handling actor behavior must be particularly able to
adapt to different situations. We also believe that trust decisions are not a straightforward process with
clear cases, so we have made sure to add a means to set up “special cases" with different triggers, such
as the identity of the actor, a specific contract or the point of time of the decision. These special cases
arereferred to as context filters: they tweak the decision inputs or output according to the surrounding
context.

As a final precaution against the inherent unpredictability of special cases in behavior control, we con-
clude that the decision system can only automate routine decisions, while unclear situations must be
resolved by a human user. For this purpose, we have designed the system to be aware of a set of signals
that indicate a decision situation is not routine and must be forwarded to a human user, and automate
only those decisions that have sufficient and clear input data to support them.

Our evaluation so far has shown that an extended information model allows us to address certain kinds
of attacks and misbehavior that could not previously beidentified at policy level at all. On the other hand,
the cost of having more sensitive adjustment knobs to turnis that the system may become more com-
plicated to configure, to the point of being critically less usable than a more coarse system that demands
hardly any user effort to use at all. The valuation of which adjustment knobs are worth the effort to take
into use also depends on the user of the system, while on the other hand it is impossible to prove that a
current set of adjustment controls are sufficient for all reasonable needs.

We find that the configurability and ease of configuring the trust management systemis a key usability
factor and arequirement for balancing between the conceptual complexity of the model and the quality
of the decisions made. This can be further dividedinto the need for configuring effort, and the usability of
the configuration interface. We have focused on identifying the minimal configuration that the system
can operate on, to ensure that the user has the choice of taking the additional expressiveness of the
policiesinto use. In terms of user interfaces, we have so far collected some early feedback on how eas-
ily users can understand the concepts behind the prototyped systemin a decision-making situation 3.

Inaperfect world, the system would configureitself to do the "right thing" based on what the contracts
and internal business policies say, but even the age-old legal tradition cannot produce contracts that

2BPaaS-HUB, http://193.166.88.67/bpaas/

Collaboration lifecycle =
|’

Collaboration
Population Contract i T ti
> templ?te >>with services>> negotiation >> Sesat el Esmlgaten
selection
Cj

Fa /E.

Collaboration Service offers Service _ ‘Reputati_on
templates implementations information
A A

S

L

= «
DDA DD DD

Software development lifecycle
(particularly Security Development Lifecycle)

Figure 3: The collaboration lifecycle builds on artifacts produced during the software development lifecycle, most
notably the service implementations.Trust decisions are made before committing to a contract and during opera-
tional time, and experiences from operation and termination are recorded as reputation information.

need nointerpretation and could be automatically judged. Policies reflect the preferences of the organi-
zation, and not even all contract violations may be equally worth reacting to: maybe one long-standing
partner has a tendency to be a bit unpredictable in its response times but deliver high-quality service
otherwise, while in another situation a failure in timeliness would mean a swift end to the collaboration,
for example.

Providing every service provider with an equal default policy is also an attractive idea, and the minimal
configuration approachis likely to be close to this. One should keep in mind the problems of monoculture
too, however: differences in decision-making behavior make the entire ecosystemless attractive atar-
get for attackers, for the samereasonthatitisbeneficialthat not everyone onthelnternet hasthe exact
same operating system version when a vulnerability is discovered and exploitedinit. This also translates
to a need for trust management systems to be able to interoperate also when not everyone uses the
same system, let alone with the same configuration.

Alternatively, configuration could be eased by learning algorithms: we could hope to provide a set of
sample situations for the system and, like a learning spam filter for email, it would then be able to cat-
egorize later situations as good, bad or something in between.

The final requirement for policies is that their evaluation should not take too much time and computa-
tionalresources. As trust decisions must be doneinreal time, slow decision-making reflects on the user
experience. We find that in the system prototype, input information can and in general should be pre-
processed so that the actual decisions can be done efficiently.

We have evaluated the performance costs at the level of computational complexity. The two aspects

3See Kaur, Ruohomaa, Kutvonen, 2012.

of interest are the number of context filters and the amount of processing needed at the monitoring
points. First, the context filters are the technical representations of situation types involving business
interests and risks. The complexity increases linearly as the number of filtersincrease, but it is not likely
that business managers would want to deal with an excessively rich world of situations. Second, the
processing overhead at monitoring points needs to be kept low, although the monitoring points create
the triggers for producing experience reports. We have concluded that the experience gathering for
trust management does not need to happeninreal time, so the overhead from the point of service useis
limited toidentifying points where to make the appropriate log entries for the purposes of offline experi-
ence processing. Other researchers have studied the operational time costs introduced by monitoring
from the point of view of Service Level Agreements and found the results promising 4.

Input data

A state of the art review we have conducted indicates that computational reputation systems for en-
terprises do not really exist yet; what has traditionally been used is project references, such as in con-
structionbusiness, or past partners and implemented cases in software business °. This kind of referrals
serve marketing purposes, but also act as an anchor for spreading word-of-mouth kind of reputation:
the prospective customer can in theory go see the result or at least ask the partner about their ex-
periences, if they are willing to share them. The feedback collection system of Rakentamisen Laatu is
a domain-specific service collecting and aggregating manually entered feedback about construction
projects; the feedback information s visible to registered organizational users only.

We have explored different possible business models for establishing a reputation system specifical-
ly for computational trust decisions. We have found that a bulk, mostly automated reference collec-
tion service could be offered at alow cost to customers such as small to medium enterprises as a web
service. On the other hand, more complex analysis personalized to the needs of the specific enterprise
demands more resources, and while it provides more control to the user, it is also more likely to only
be feasible to offer to large organizations due to the inevitably higher costs ®. In addition, mash-up ap-
proaches for reputation information may not be able to extract the more specific information from its
silos: infrastructure service providers collecting reputation information build their business around it,
and may not be willing to publish it to external service providers”.

Credibility is an important factor in shared external information: where good reputation translates to
more business opportunities, it is worth enough money to attract both downright reputation fraud and
also less deliberately harmful attempts at boosting the service provider's own reputation, such as at-
tempts to buy or otherwise solicit positive feedback outside the expected method of delivering good
service. Credibility concerns apply both to the actor sharing their own feedback and to the system de-
livering aggregated feedback of its users: for example arestaurant rating service has been suedfor sell-
ing its users means to conceal their negative feedback &. From this point of view, organizations that are
more closely tied to and represent their own user base, such as associations of service providers within
a domain, may be more natural infrastructure service providers for setting up domain-specific enter-
prise reputation systems than entirely independent companies.

4 See e.g.Raimondi, Skene, Emmerich, 2008. " For example the online auction site eBay's
user agreement explicitly forbids users from

5 Seealso Ruohomaa, Kutvonen, 2013 > . .)
exporting their reputation to other sites.

6 For anoverview of the services, see Ruohomaa, Kutvonen, 2013.

8
The business models are analyzedin Ruohomaa, Luoma, Kutvonen, 2013. SeeRuohomaa, Kutvonen, 2013.

References

SiniRuohomaa. The effect of reputation on trust decisions in inter-enterprise collaborations. PhD the-
sis, University of Helsinki, Department of Computer Science, May 2012.

Puneet Kaur, SiniRuohomaa, and Lea Kutvonen. Enabling user involvement in trust decision making for
inter-enterprise collaborations. International Journal On Advances In Intelligent Systems, 5(3&4):533-
552, December 2012.

SiniRuohomaa, Lea Kutvonen. Rolling out trust management to cloud-based service ecosystems.
Technical report, University of Helsinki, 2013.

SiniRuohomaa, Eetu Luoma, Lea Kutvonen: Trust broker service, 2013. Submitted manuscript.

Lea Kutvonen, Toni Ruokolainen, Sini Ruohomaa, Janne Metso: "'Service-oriented middleware for man-
aging inter-enterprise collaborations.” Global Implications of Modern Enterprise Information Systems:
Technologies and Applications (2008): 209-241.

Raimondi, F.,, Skene, J. ja Emmerich, W.: Efficient online monitoring of web-service SLAs. Teoksessa
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, sivut 170-180. ACM, 2008.

Appendix:
Generic Sec

User Stories

Tuuli Siiskonen, F-Secure
Camillo Sars, F-Secure
Antti Vaha-Sipild, F-Secure

This appendix lists the Generic Security User Story templates. Please refer to the main article on the

background and usage.

Account lifecycle
As aperson accountable for privacy (data protection)
I want that user accounts have a well-defined lifecycle with all the necessary ac-
count states
so that we can manage users' personal data properly.
Description User accounts need to have a well-defined lifecycle. For example, accounts

need to be created; old accounts' data may need to be purged (personal data
handling requirements); accounts may need to be flagged or locked because
of technicalissues or misuse; new accounts may need to go through specific
validation steps to be fully enabled (for example, require valid email address
tobe able to use all features).

Acceptance criteria

>> A state machine description of account states exists, and is document-
ed for maintenance.

>> Test cases exist that take an account through all the possible states of
anaccount according to the state machine description.

>> Negative test cases exist that try out activities in various states of an
account that should not be possible in those states, and verify that the
activities fail.

Refinement questions

>> How and by whom are user accounts created?

>> How and when are user accounts destroyed?

>> What sort of “special states" can user accounts bein?

>> Have you thought about failing user interactions (e.g., registration fail-
ures) and in which state they will leave the user account?

Access control policy

As aninformation security manager

| want that it is clearly defined which user accounts are authorised for which ac-
tivities

so that the effectiveness and correctness of access controls can be checked.

Description It should be clear what different user accounts can do. For example, if there

are different user roles, administrator role, power user role, normal user
role, and so on, should have clear definitions as to what they will be able to
do. The existence of a policy isimportant for the information security man-
ager because it allows checking whether the system actually conforms to
the policy and effectively protects the information.

Acceptance criteria

>> Access control policy (clear definition) exists in design and is provided
for maintenance.

Refinement questions

>> What sorts of users or user roles we have, or should have?

>> Canusersbeinmorethanonerole? At all, or at the same time?

>> Canapolicy conflict between two or moreroles for a single user?

>> |s there a permission modelin the system that can be mappedto these
user types orroles, andif so, what is this mapping?

Access control implementation

As auser

| want that access controls effectively prevent all unauthorised actions or opera-
tions

so that am protected.

Description Access controls (whether on user level, or component level) must prevent

allunauthorised actions, and a key to thisis to have a clear and understand-
able access control model. Clarity of code and maintainability are critical
quality aspects. It is also important to use the "least privilege" principle,
meaning that users and components are only given the access they really
require in the policy, and not anything “just in case" or “because it did not
work otherwise’.

Acceptance criteria

>> Negative tests that try to do accesses that are prohibited by access
control policy (i.e., should not succeed).

>> Exploratory (manual) tests by a professional that try to bypass access
controls (in ways which have been left undefined by policy, for exam-
ple).

>> |fthere are ''test accounts" or access control has a test mode", there
must be a test case that verifies that these test accounts and modes
have been disabled inreleased code.

>> Tests exist where several users in different roles use the system con-
currently, and check for concurrency problems.

Refinement questions

>> Areall access control decisions centralised in one (or few) components
instead of being spread all over?

>> Do all of your components require appropriate permissions from other
components that callthem, and do your components only have those
permissions that they really require?

>> Canyou easily explain how your access control works?

Architectural threat analysis

As aproduct owner

I want that each functional feature is subjected to an architectural security and
privacy threat analysis

so that all security work that needs to be doneis identified and visible on the back-
log.

Description A dataflow based threat analysis (a.k.a. threat modelling) should be done on

architecturallevel. This should identify data flows, data stores, and security
boundaries in your system. Each data flow and store should be subjected to
a threat analysis exercise (for example, utilising Microsoft's STRIDE meth-
od). This analysis should produce security features that need to be added,
and identify new testing needs. In essence, threat analysis produces secu-
rity-related new backlog items. This is also needed to produce evidence to
customers that security has been thought about.

Acceptance criteria

>> Evidence of architectural threat analysis having been done. This evi-
dence caninclude new backlog items and test cases as well as analysis
notes.

>> Evidence of threat analysis must be tangible enough so it can be pre-
sented to a customer or anindependent security assessor.

Refinement questions

>> Do we have a good enough understanding of the architecture so that
we could draw a Data Flow Diagram without leaving too many vague
areas?

>> Which threat analysis method is best suited for our purpose? Do we
have arecommended method? (Example: STRIDE with a Data Flow
Diagram.)

>> Do wehave a good grasp of current software security weakness land-
scape, or should we seek help?

>> Should we make architectural risk analysis a standard practice for ma-
jor new functionality, for example, through our Definition of Done?

Interface robustness

As

an information security manager

| want that every interfaceis robust against malformed or invalid inputs and mali-
cious datainjection

so that attackers cannot bypass our security.

Description Interfaces need to be robust against inputs that do not conform to the

specification. This kind of inputs include malformed or broken data, inputs
that are out-of-sequence or wrong in a given state of system, interactions
that areincomplete, or contain various injections (for example, database or
scripting injections). The expected result for any of these kinds of incorrect
inputs is an error that is handled gracefully, or silent rejection of input. The
targetis not toadd complexity to cover all eventualities but instead to avoid
undefined or unmanaged error situations such as crashes and core dumps,
hangs, performance degradation, denial of service, or data corruption.

Acceptance criteria

>> Test cases have beenimplemented that testinterfaces with mal-
formed or invalid inputs, and malicious datainjection.

Refinement questions

>> Whichinterfaces handle datareceived from outside the system
(directly or indirectly)? (This information can be obtained from an archi-
tectural threat analysis.)

>> Whichinterfaces do not need to be robustness or injection tested?
Why?

>> Where does each data flow terminate (on each protocol level;in a
typical web application, the layers could be, e.g., TCP, TLS,HT TP, and
application data)?

>> What sort of injections should we test against for each of these data
flows (malformed data, a.k.a. fuzz testing, or injections like Cross-Site
Scripting, SQL injection, command injection)?

>> How should be ensure that robustness tests are also built for any
futureinterfaces we might create?

Third party security assessment

As an auditor

| want that the security of the product has been assessed by anindependent third
party

so that | canrely on theresults of the assessment.

Description Third party (external) security assessments are needed to validate the se-

curity activities that we have done internally. These are required both as a
customer requirement of independent verification, and because we expect
thethirdparty tobe up-to-date onany cutting edge security issues,and be-
cause for audit purposes, independence from actual developers is required.
The use of third party assessments should aim to be validation only, which
means that security testing or threat analysis should not be outsourced to
them. Third parties should be contracted only after security threat analysis
and security testing has been conducted internally, and before the product
is launched or given to a customer.

Acceptance criteria

>> A writtenthird party assessmentreport.
>> Bugreports or product backlog items that target the third party find-
ings have been created.

Refinement questions

>> What actually creates a need for a third party assessment? (E.g., con-
tractual requirement, business risk acceptance decision?) Given this
business requirement, how large our investment (budget) will be?

>> When are wein a good enough shape to get an assessment (enough
features but stillenough time to fix findings, and allknown open secu-
rity issues fixed)?

>> Have we utilised allinternally available competencies for security
testing before engaging a third party? (Third parties should not find
problems we ought to have found ourselves.)

>> |s the third party competentin our specific technology area?

Availability

As auser

| want the application to be available when needed

so that | get the expected value out of it.

Description Availability is about the application being available for use when required.

The application development needs to consider both random faults and in-
tentional attacks. Reasonable effort needs to be taken to ensure availability
in both cases. Fault sources include, for example, hardware failures, power
and communication outages, and bugs. Intentional attacks typically target
capacity (network, memory, storage, CPU time) or logical flaws (deadlocks,
livelocks). Intentional attacks actively try to exploit worst-case scenarios.

Acceptance criteria

>> Tests exist thatintroduce synthetic failures that simulate availability
problems.

Refinement questions

>> What are our availability requirements?

>> What types of failures, attacks or attackers could cause availability
problems?

>> Does our architecture have points that are especially susceptible to
denial of service attacks?

Business Continuity

As aservice owner

I want thatrecovery from outages is quick and cost-effective

so that disasters do not ruin the business.

Description Engineering for business continuity addresses how quickly and cost-effec-

tively we canrecover from a serious outage. Engineering problems revolve
around issues such as avoiding single points of failure (geographically, net-
work-wise, logically), ensuring that your application can be deployed auto-
matically, and managing issues related to data transfer and storage capac-
ity.

Acceptance criteria

>> Recovery plan for the application exists, and has been tested.
>> Application deployment has been automated.

Refinement questions

>> What is our maximum tolerable outage time? (A time after whichitre-
ally doesn't matter anymore.)

>> How fast are we aiming to recover? (Meaning faster than the maximum
tolerable time.)

>> What needs to berestored, recreated or reconfigured when re-de-
ploying the application (data and dependencies)?

>> When datais restored, how old canit be?

>> How can we ensure theintegrity and consistency of restored data?

>> |sthere aneed for geographically distributed redundancy and high
availability?

External security requirements

As sales

| want tobeabletoshow that external security requirements have been addressed
so that we can sell our product.

Description Depending on the application, its intended use, the type of industry, and the

customer, there may be several sources for external security and privacy
requirements. These can be, for example, standards, company policies, cus-
tomer requirements, or regulatory requirements. It is one thing to know
what external requirements are needed, but for compliance reasons, it is
also necessary to be able to show (i.e., build an argument) that they have in
fact been addressed.

Acceptance criteria

>> Tests exist for all external security requirements that can be function-
ally tested.

>> Thereis an agreed way in which we document the work we do for ex-
ternal security requirements that cannot be tested.

Refinement questions

>> Do we understand our external security requirements for confidential-
ity, integrity and availability?

>> Which of these external requirements can be tested?

>> Which of these external requirements cannot be tested, but could be
documented?

>> How will we document the work for external security requirements?

Accessible privacy policy

As auser

| want that our products communicate the up-to-date company privacy policy in
an accessible way

so that | can understand how my personal datais used.

Description The privacy policy describes the private (personal) information that is col-

lected from the user, and how it is used and protected, and the contact point
for moreinformation. It also fulfils the other legal requirements for informing
the user. Companies often have a standard privacy policy that may be used.
The accessibility of privacy policy means that the language of the privacy
policy should be simple enough to be understood by the user, and that it is
communicated before the user commits to the use of the service, and at any
time afterwards at arequest of the user.

Acceptance criteria

>> The privacy policy is accessible from the product in a suitable manner.
>> The privacy policy communicated by the product can be updated.

Refinement questions

>> What s the target audience of our product and how should we com-
municate the privacy policy to this target audience? (Age, accessibility,
device interface limitations, ability, language.)

>> Does the standard privacy policy meet your needs?

Notification of changes to T&C and privacy policy

As a company legal counsel

I want that when the terms and conditions or the privacy policy change, the end
user is notified

so that itis clear under which terms and conditions we provide the service.

Description When there are (material) changes to terms & conditions or privacy policy

of our products, the users need to be notified. How prominent a notification
needs to be defined based on the changes, but it must be prominent enough
so that we can argue that the users did have a reasonable notice of any
changes and would have had the opportunity to react.

Acceptance criteria

>> Functionality exists that when the terms and conditions or the privacy
policy change, the end user is notified.

Refinement questions

>> Do we need to address this in the product user interface, or do we have
other ways to contact the users (e.g., e-mail)?

>> Do we need to support potential mandatory opt-in regulations in the
future? (Meaning that in order to continue the use of the product, the
users would need to positively acknowledge acceptance to new terms.)

Audit log of security activities

As aperson accountable for security

I want an audit log of all security activities

so that we can detect possible system compromises or abuse and conduct inves-
tigations.

Description Administrator and support persons (such as customer support) are only

expected to do administrative tasks when there is a genuine reason to do
soandthe actis allowed by a policy. For example, we must be able to detect
administrator changes to system configurations. We also need to be able
to log security decisions made by the system, such as access control deci-
sions, and major system state changes like start-up and shutdown events.
At the same time, this audit log must be tamperproof (integrity protected)
against those persons whose activities are logged. For systems handling
sensitive data, this type of logging is sometimes a legal or contractual re-
quirement.

Acceptance criteria

>> Test that all security activities (access control decisions, etc.) create
audit log entries.

>> Test that alladministrator activities in the system create audit log
entries.

>> Test that an administrator in the system cannot modify or delete audit
log orits entries.

Refinement questions

>> What types of administrators exist in your system? (Power users,
system administrators, etc.)

>> Arethere any specific customer requirements for the audit log (for
example, due toindustry sector or country where the customer is
operating)?

>> What events need to go to the audit log (versus a normallog)? The dif-
ferenceis that an audit log is tamperproof against the persons whose
activities arelogged.

>> What external connections need to beloggedin an audit log?

Audit log of personal data access

As arepresentative of a personal data controller

I want an audit log of all access and changes to personal data

so that we have evidence of activities in order to fulfil legal obligations.

Description “Personal data” (especially in the U.S. known as PII, Personally Identifiable

Information) is any data about a person that can be tied to a person. Wheth-
er data is personal sometimes depends on the context. The company is le-
gally required to guard access to and integrity of personal data, and in order
to enforce the privacy policy and have evidence, all accesses and changes
to such data need to be logged in a way that can be audited after the fact.
A typical case would be that a user ends up on evening news and admins
would out of curiosity view this person's data. This audit log must be tam-
perproof (integrity protected) against those persons whose activities are
logged.

Acceptance criteria

>> Test that all personal data accessesin the system create audit log
entries.

>> Test that the users / administrators whose activities are logged cannot
forge or delete audit log entries with their permissionsin the system.

Refinement questions

>> What types of personal data do we process? (Involve the company legal
and information security functions if unclear whether a specific datais
personal datain your context.)

>> What user or administrator activities trigger the processing of personal
data?

>> Whichinterfaces does personal data pass through? (Sending such data,
evenif encrypted, is data access too.)

Log event separation
As aservice manager
I want log events to be separated by severity and type
so that log analysis tools can be used effectively.
Description Inmany cases, amount of datainlogsis very large. Log analysis can become

difficult because of sheer size, or because log analysis software is licensed
per volume of log events; or that data can be filtered for optimising log stor-
age and use. Because of this, log events would need to be categorised al-
ready when they are created. Typically the axis would be severity (how im-
portant alog item is; e.g., debug, notice, warning, error, and fatal error) and
type/source (e.g., which process/part of the system created it for which
purpose, etc.)

Acceptance criteria

>> Test that alllog items that have been created have a severity and type/
source tag.

Refinement questions

>> What severity levels do we have for log events?
>> Whatis our list of log event type/sources? (List should be uniform
across the whole system.)

Protection of log events

As aservice manager

I want log events to truthfully reflect what is / was happening in the system, dur-
ing system use and after a system failure

so that events can beinvestigated.

Description Log items may contain a lot of information either directly or through cor-

relation that may be sensitive in several ways, so the data needs to be pro-
tected against unauthorised access. Data needs to be a reliable source of
information, so they must not be lost or corrupted. Data also needs to be
available evenif thelogged system itself would completely fail. All of these
considerations need to apply to log data both when it being created, trans-
ferred and whenitis stored.

Acceptance criteria

>> Architecturally, log events are stored within a different security do-
main than the software whose functionality is being logged. (Meaning
outside the control of the system which is being logged.)

>> Test thatlog files cannot be read or modified by unauthorised users; for
audit logs, test tamperproofing against the persons whose activities
are being logged.

>> Test that auditable operations cannot be performed if the audit log
cannot be written.

>> Test thatlog events do not contain sensitive data unnecessarily.

Refinement questions

>> Where are our logs stored?

>> |sthe storage sufficiently separated from whatever we log in terms of
hardware failures and successful attacks?

>> How do we transfer the log data to wherever itis stored?

>> Who should be able to read and modify our logs? In the case of an
audit log, is it tamperproof against those persons whose activities are
logged?

>> Arelog entries appropriately timestamped?

Standardisation of log events

As aservice manager

I want thatlog events arelogged in a standard way

so that we can effectively analyse them.

Description Log events need tobe processed with existing log analysis software, with-

out having to determine bespoke matching or parsing systems. This means
that logging should use the logging facilities offered by the platform (syslog
on Linux, standard logging APIs provided by your framework, etc.)

Acceptance criteria

>> System design states that logging uses the standard logging facilities
of your platform and specifies the standard format.

Refinement questions

>> What are the standardlogging facilities for our platform or company?

Patching & upgrading

As aservice manager

I want thatany software component thatis part of the product can be quickly and
cost-efficiently security patched

so that we minimise the time we are vulnerable to an attack.

Description Fromthe moment we become aware of asecurity vulnerability in our prod-

uct, it will be a race against time. A failure to provide a security fix quickly
enough may lead to the company having to take drastic measures, such as
shutting down the service. This timespan typically ranges from hours to
weeks, but cannot be knownin advance. Itisimportant to note that the se-
curity vulnerability may be in third-party code, but we still need to be able
to provide afix.

Acceptance criteria

>> Forall (third—party) code that we do not have a formal maintenance
contractin place, we must have a formal patch back-porting process
inplace.

>> We have automated test cases that try to patch each componentin
therunning system.

Refinement questions

>> How can we deploy patches?

>> Arethere components that are exceptionally hard to patch (e.g., third-
party binaries, firmware or ROM code, components requiring formal
certification or digital signature)?

Change management
As aservice manager
I want that changes between application versions are clearly documented
so that unknown changes do not compromise our security.
Description Developers need to be able to document what changes between applica-

tion versions, because these may have an effect on security (e.g., changes
in behaviour or configuration). Typically, this would mean accurate and
completerelease notes.

Acceptance criteria

>> Thereis an agreed way to createrelease notes.

Refinement questions

>> How can our development project tell what changes betweenits
releases?
>> Do all developers document changes on a sufficient level?

Component inventory and origin

As aninformation security manager

| want that all software components used are known and trusted

so that we can effectively maintain our software.

Description All the software components that are used in the product should be listed

and the list needs to be maintained. The list needs also to have the current
and historical versioninformation (so that we know what we need to patch),
and the patchlevel (so we know how we have changed the components).
The company may maintain a centralised list of 3rd party components, and
that list needs to be kept up-to-date as well. Components that need to be
listed include third party and open source components, and those that are
made by us, and include, for example, shared libraries, platforms, and sup-
port applications. We also need to agree that we can trust all the code, con-
sidering its quality and origin.

Acceptance criteria

>> No unauthorised third party codeisincluded in the product.

>> |t has been defined who can authorise third party code to be used, and
what checks need to bein place before that can happen.

>> Thelist of components with version and patchlevelinformation exists
inaknown place.

>> We know who the personis who tracks the vulnerabilities of any third
party code we use, and this personis aware of the fact that we use this
third party code.

Refinement questions

>> Do we have a clear idea of the dependencies (like libraries) we need to
run our product? How about their dependencies?

>> Do we know where our code originates from? How can we ensure the
integrity of code we bring in from outside?

Monitoring
As aservice manager
I want that the functioning of the product can be monitored
so that we canreact to abnormal activity.
Description In order to be able to tell the internal state or health of a system, you may

need to expose some metrics or state information of your system so that
thisinformation canbe monitored. The simplest form could be that youhave
a system that responds "ok within a predetermined response time, if the
systemis ok. Monitoring interfaces are near real-time.

Acceptance criteria

>> Aclearlist of product activities that need to (and can) be monitored ex-
ists, made available in product administrator documentation.

>> Thereis an automated test that determines whether we get the moni-
toring data.

Refinement questions

>> What are the reasons for monitoring the functioning and activity of
your product whileitisinuse?

>> Given thesereasons, what would we need to monitor?

>> How can this need be communicated to whoever is supposed to do the
monitoring?

>> Do weneed toimplement some standard monitoring interface?

Enabling intrusion detection

As an information security manager

| want that the system can be monitored for intrusions

so that we can detect intrusions and respond quickly.

Description Attackers typically try to modify or replace critical system files to place

backdoors or cover their tracks. They also may want to modify files that
are servedto clientsin order to attack users. Network attacks, on the other
hand, cause data traffic which is “not supposed” to be there, for example,
port scans. There are various intrusion detection tools that can alert ad-
ministrators when this sort of activity happens, but those tools need to be
configured and told what (not) to look for. Developers should have a clear
understanding of things that really belong to their system and this should be
documented so intrusion detection can be configured.

Acceptance criteria

>> Any network traffic that should not exist can be detected (e.g., a final
“deny all" rule of a host firewall triggers).

>> Unauthorised modification of any important file can be detected (such
files are, e.g., configuration files, log files, key files, binaries and WARs,
and code thatis sent to clients for execution such as ?JavaScript on
web pages).

Refinement questions

>> Which parts of the system are such that unauthorised changes or
modifications need to be detected? (E.g., binaries, scripts.)

>> Canyou accurately distinguish acceptable network traffic from unac-
ceptable traffic?

>> Do you know exactly what files and network traffic belongs to your
system?

Malware protection
As an information security manager
| want that the system has real-time protection against malware
so that thelikelihood of infection is reduced.
Description Systems that are likely to need anti-malware software are front-end serv-

ers (primary exposure to attackers from outside), administrator nodes and
content servers (especially those who host content from outside).

Acceptance criteria

>> Allsystems that are deemed to be at risk runreal-time anti-malware
software.

Refinement questions

>> Which systems arein the need of anti-malware software, and what
other ways there could be for protecting against malware?

>> Could running anti-malware software cause problems, for example, if a
log file would accidentally contain a malware fingerprint?

Content takedown

As acustomer services manager

| want that we are able to quickly remove and reinstate specific content in a con-
trolled fashion

so that we comply with takedown laws, regulations and contracts.

Description Content takedown requests result from civil (e.g., copyright violations) or

criminal (e.g., child pornography) legislation and in some cases may involve
a gag order (we may not be able to divulge the fact that we have a takedown
request). Content takedown requests (e.g., the DMCA in the US or a court
order) may force us to remove a specific piece of content quickly. The same
regulations may cause us a need to reinstate the same content quickly. We
should be able to do this without causing collateral damage, for example, we
might not want to close a user's account just because of one alleged copy-
right violation which is unproven. Content takedown usually needs to follow
avery specificexternally mandated process and leave a sufficient audit trail.

Acceptance criteria

>> Our support/administration tools support these externally mandated
content takedown processes.
>> Use of takedown functionality leaves an audit trail.

Refinement questions

>> Which content takedown legislation and contracts might apply to us?

>> Which content is potential candidate for a takedown?

>> Does our information architecture support the takedown of specific
content items?

Legal interception and access

As a company officer

| want that we can provide legal access according to applicable laws in a cost-ef-
fective way

so that we comply with legalinterception and access laws and regulations.

Description A court may order us to hand over data to be used as evidence in a criminal

case.In some countries, if we wish to operate in that market area, we might
be ordered to provide some level of access to data or data flows. Company
officers may in some cases be held personally accountable for failure to
comply. It is important to note that irrespective of technical measures, any
access of this kind must be reviewed and approved by a person who has
been specifically authorised to do so, and leave an audit trail.

Acceptance criteria

>>

>>
>>

The specification and features of this functionality has been specifically
approved by company legal counsel.

Our privacy policy isinline with theimplemented feature.

Use of legal interception and access leaves an audit trail.

Refinement questions

>>

>>

>>

Which legal interception and access laws and regulations might apply
tous?

Which content or data flows are potential candidates for legal intercep-
tion or access?

How can we protect against abuse of these features?

Backups

As auser

I want that the system and necessary data can berestored after anincident

so that my datais not lost.

Description We need to be able to restore (or recreate) the system and the data at re-

quest. This can be a result of faults, failures, malicious acts or user errors.
Systems and their configuration could be recreated from deployment pack-
ages, andin some cases, some data could be deemed not to require backing
up. Data must be stored in a way which does not preclude backing up, and it
must also be possible to restoreitina way that it stays consistent.

Acceptance criteria

>> A completeinventory of all things that need to be backed up exists,
with the backup frequency and retention times.

Refinement questions

>> What needs to be backed up?

>> What does not need to be backed up?

>> How often do backups need to be done and for how long do the backups
need to be stored?

>> Whendataisrestored, how old canit be?

>> How can we ensure theintegrity of restored data?

Cryptographic key management

As aninformation security manager

I want that thelifecycle of cryptographic keys s secure

so that we can have any trustin the security features of the system.

Description Cryptographic keys are used in various roles, for example, in security pro-

tocols, authentication control and session control. Cryptographic key man-
agement can fail in multiple phases of their lifecycle: creation, provisioning,
distribution, storage, use, replacement, and destruction. Software develop-
ers must address this area properly, as anincorrect implementation cannot
usually be fixed in production. Cryptographic engineering requires expert
knowledge.

Acceptance criteria

>> Test that all secrets are protected correctly both inmemory andin
storage.

>> Randomness tests for session tokens and similar random identifiers
exist.

>> Verify that key and random token creation use sufficiently strong ran-
domness sources.

Refinement questions

>> Where does your product use cryptography (encryption, random num-
bers such as session tokens, integrity checks, hashing)?

>> How does your product use cryptographic keys?

>> How are cryptographic keys protected from compromise?

>> How arerandom numbers seeded?

Platform hardening

As aninformation security manager

| want that the platform minimises attackers' possibilities

so that thelikelihood of a breach is minimised.

Description Best practices guides typically recommend disabling or removing all un-

necessary functionality (default servlets, admin consoles, daemons, pro-
cesses, SDKs, example files), running processes with least privilege, using
operating system provided key stores, isolating unrelated components
(using different users, chroot, sandboxing, etc.), deny by default firewall
policies, changing all default passwords, and removing or disabling debug-
ging functionalities. Each platform has its own peculiarities and should have
its own hardening standards.

Acceptance criteria

>> Ahardening guideline document exists.

>> The platform has been hardened according to a hardening guideline.

>> Tests exist that verify that the hardening has been done.

>> Tests exist that check for any configuration changes that we have
introduced only for testing purposes.

Refinement questions

>> Whatis / what are the applicable hardening guideline(s) for our
product, considering the whole software stack from the underlying
hardware up to our application?

>> Arethere operating system provided services (for example, key stor-
age services) that could be leveraged?

>> Arethere any configurationitems (e.g., open SSH port) that are only
needed for testing, and should be removed in production deployment?

Network architecture
As aservice manager
I want that the network architectureis secure andis leveraged to provide security
so that attacks are easier to contain.
Description Incorrect network configuration can severely compromise your application,

evenif your application would have a good security model. For example, if a
connectionto adatabaseisinsecure even though your application assumes
it is secure. On the other hand, a good network configuration will signifi-
cantly enhance your security at alow cost. For example, you canisolate da-
tabase machines so that they can only communicate with your application.

Acceptance criteria

>> ADataFlow Diagram of the system exists and it shows network trust
boundaries. (A Data Flow Diagramis usually produced in architectural
threat analysis.)

>> Network scanning tests exist that validate the network deployment.

Refinement questions

>> What implicit assumptions are we making about the network? (For
example, do we assume that some connections are “trusted”)?

>> Does our application support network segmentation? Which type of
segmentation would offer additional security?

>> How and where do we deploy firewalls?

Administration access

As an information security manager

| want administrator access to be protected by strong authentication and access
controls

so that we can have any trustin our user account model.

Description Insufficient security for administrator access may cause complete system

compromise. Because of this, access to administrator functionality must be
restricted and administrators must be authenticated with strong authenti-
cation. Passwords alone are not regarded as strong authentication.

Acceptance criteria

>> List of administrator interfaces and administrator roles is documented.
>> Administrator interfaces have been subjected to exploratory security
testing.

Refinement questions

>> What roles on the system are “administrative roles?

>> Who are our administrators and from where do they need to administer
the system?

>> How do we control access to administrative interfaces?

Separate development and production environments

As aservice manager

| want tohave separate development and production environments

so that production environment and data are not put at risk.

Description Different environments should not interfere with each other: development

should not affect testing, and testing should not affect production. Also,
production data should not be exposed through testing environments.
However, from security features perspective, the environments should be
identical so that test results from the test environment are really valid also
inthe production environment.

Acceptance criteria

>> Different environments andinstructions to set them up have been
documented.
>> Setting up environments has been automated.

Grooming questions

>> What s our development process starting from single developer's
workstation and ending to the production environment installation?

>> What are the purposes of the environments? What are the significant
security differences between the environments?

>> What are the rules of moving releases from one environment to an-
other?

>> Do any of our non-production environments have any dependencies
to any other production system (e.g., authentication systems, e-mail,
CRM, etc.)

C;LOUD SOFTWARE FINLAND

How can you manage security and privacy risks and requirements in agile soft-
ware projects? What is fuzz testing? Need insight on security metrics or trust
management?

During the four-year Finnish Cloud Software Program, people from multiple
participating companies and universities developed interesting new approach-
es to software security, privacy, metrics, and trust. The results have been dis-
seminated through numerous academic articles, which are usually not very
approachable to the laymen. Instead of letting the articles get buried in obscure
conference proceedings, expensive journals and project archives, the authors
decided to publish them as an easily approachable collection for everyone whoiis
interestedin these topics.

ISBN: 978-952-62-0341-6

